

Pharmacometric Approach To Define Narrow Therapeutic Index (NTI) Drugs & Evaluate Bioequivalence (BE) Criteria for NTI Drugs

Elyes Dahmane, Joga Gobburu, Vijay Ivaturi

Center for Translational Medicine

Department of Pharmacy Practice & Science

University of Maryland

Baltimore – USA

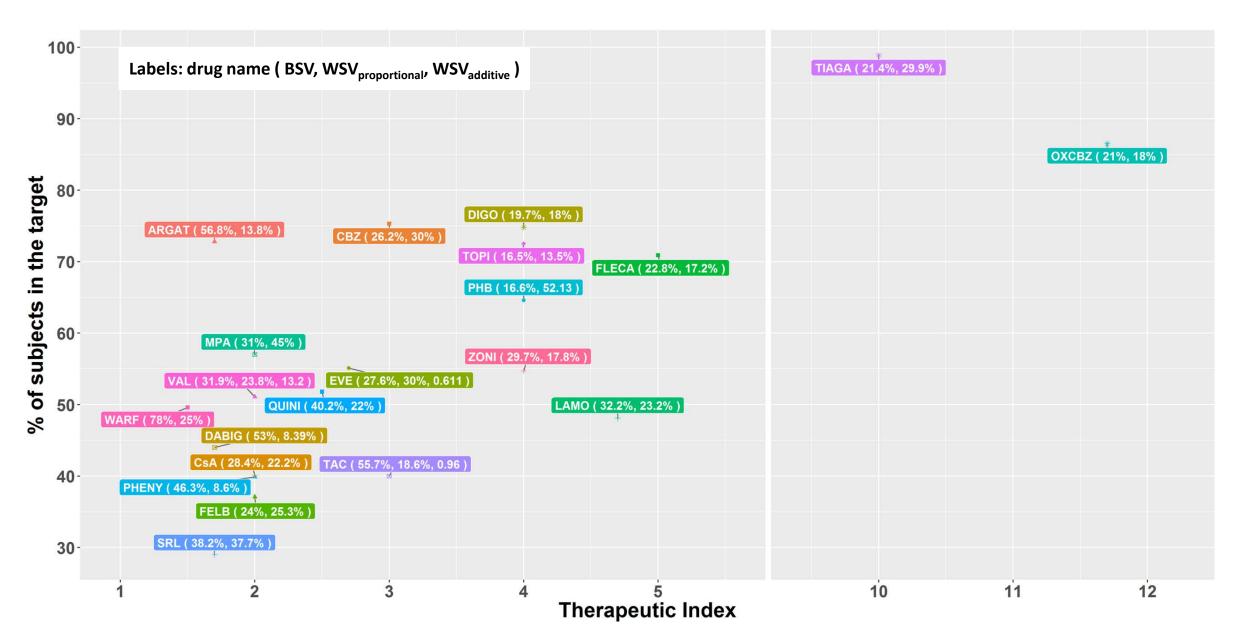
With input from US FDA

FDA grant no: 1U01FD005188-01

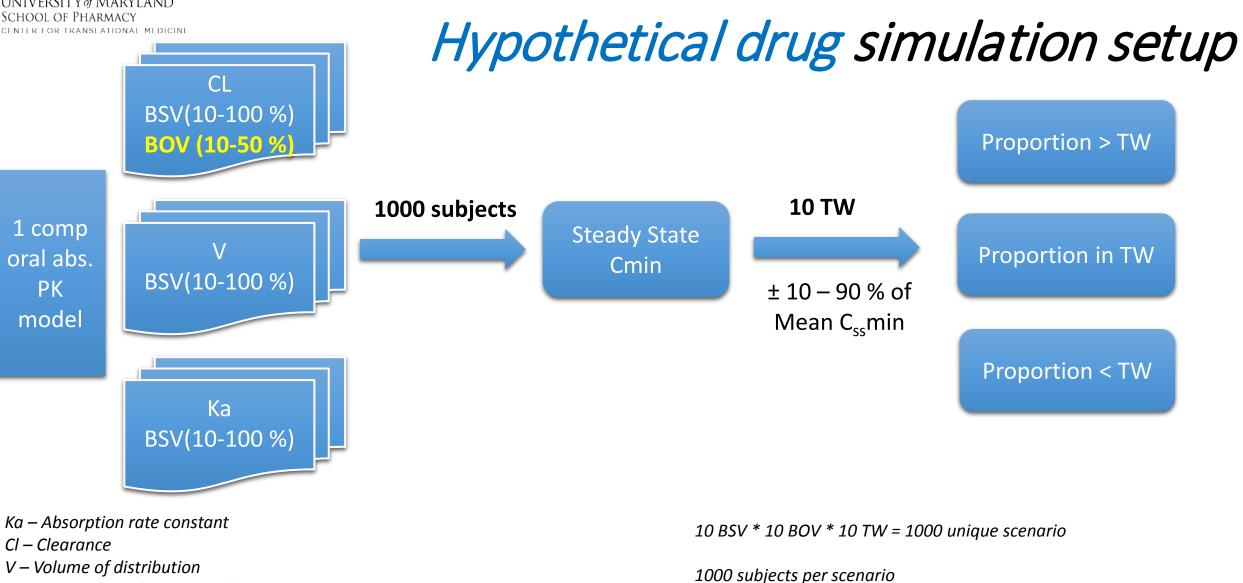
Recommendations

- 1. The rapeutic index \leq 3 is a reasonable cutoff to define NTI drugs.
- 2. Therapeutic index and small increments of dose adjustment are adequate for NTI classification.

3. To achieve a passing rate of 80% in a BE trial, the maximum observed $\frac{WSV_{test}}{WSV_{reference}}$ is 1.4



Therapeutic index ≤ 3


10 out 13 NTI drugs have a TI ≤ 3 and 3 have a TI between 3-5

Simulation setup

Total number of simulations – 1,000,000

BSV – Between Subject Variability

BOV – Between Occasion Variability

WSV – Within Subject Variability

TW – Therapeutic Window

Proportion of subjects within target is a function of Therapeutic index and WSV

	1.22	4	5.66				
50	16%	1.5 29%	1.86 44%	2.33 56%	3 67%	75%	82%
45	16%	32%	47%	60%	70%	80%	86%
40	18%	36%	52%	64%	75%	84%	89%
35	20%	40%	56%	70%	81%	88%	92%
% 30	24%	45%	62%	76%	87%	92%	95%
(%) 30 - NSM 25 -	28%	52%	69%	83%	91%	95%	97%
20	33%	59%	78%	90%	95%	97%	98%
15	40%	69%	87%	96%	98%	99%	99%
10	49%	80%	94%	98%	99%	100%	100%
5	59%	90%	98%	100%	100%	100%	100%

- For a *BSV of 10%*
- E.g. At
 - *Tl* ≤ 3
 - *WSV ≤ 35%*
 - 80 % responders within target

Proportion of subjects within target is a function of Therapeutic index and WSV

Therapeutic index 1.22 1.5 1.86 2.33 3 4 5.66										
	1.22	1.5	1.00	2.55	3		5.00			
50	14%	29%	43%	54%	64%	73%	80%			
45	15%	31%	46%	58%	69%	77%	84%			
40	17%	33%	49%	62%	72%	80%	86%			
35 -	19%	37%	53%	66%	77%	84%	89%			
(%) 30 - NSM 25 -	20%	40%	58%	72%	81%	87%	92 %			
\SN 25 -	23%	45%	62%	77%	86%	91%	94%			
20	26%	50%	69%	81%	90%	94%	96%			
15	30%	54%	75%	87%	92%	96%	97%			
10	34%	58%	79%	89%	95%	97%	98%			
5	36%	62%	82%	92%	96%	98%	99%			

- For a BSV of 20%
- E.g. At
 - *Tl* ≤ 3
 - *WSV ≤ 30%*
 - 80 % responders within target

Recommendation 2:

Therapeutic index and small increments of dose adjustment are adequate for NTI classification.

Current NTI classification criteria

- The 5 following criteria were evaluated for drugs from 4 therapeutic areas:
 - 1. maximum of 2 fold difference between minimum effective and minimum toxic dose or maximum recommended therapeutic dose.
 - 2. maximum of 2 fold difference between the lowest and the highest drug concentration from the recommended or observed therapeutic index.
 - 3. Routine therapeutic monitoring.
 - 4. Low-to-moderate within subject variability (\leq 30%).
 - 5. doses often adjusted in small increments (<20%).

Green : drugs known as non NTIs Red : known NTI drugs,

ANTICOAGULANTS

- Argatroban
- Apixaban
- Dabigatran
- Edoxaban
- Rivaroxaban
- Warfarin

ANTIARRHYTHMICS

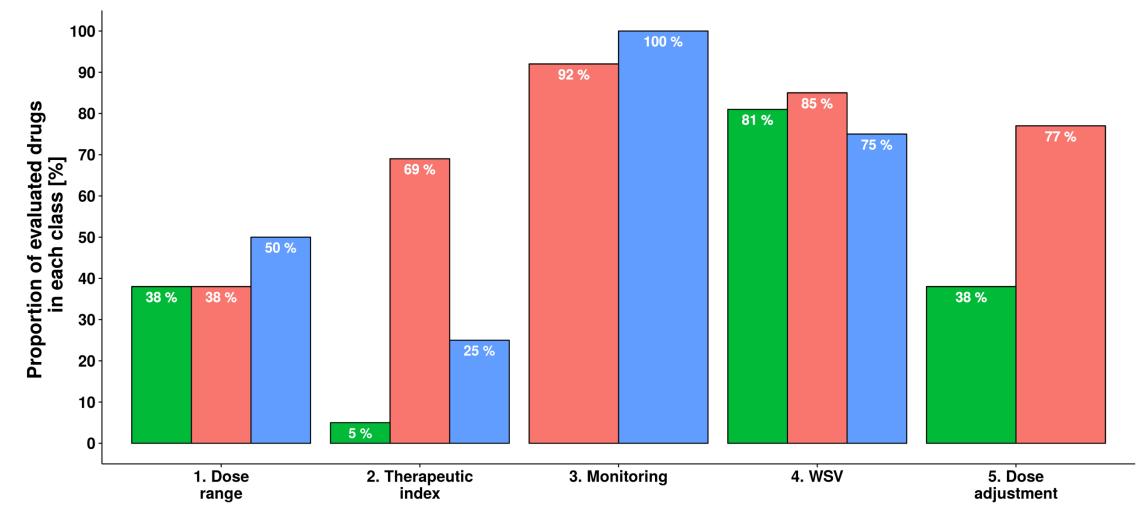
- Amiodarone
- Digoxin
- Flecainide
- Quinidine
- Sotalol

ANTIEPILEPTICS

Blue : drugs thought to be NTI but not listed by most agencies as NTIs

Carbamazepine

- ClonazepamClobazam
- Ethosuximide
- Ezogabine
- Felbamate
- Gabapentin
- Lacosamide
- Lamotrigine
- Levetiracetam
- Oxcarbazepine
- Perampanel
- Pregabalin
- Phenobarbital
- Phenytoin
- Rufinamide
- Tiagabine
- Topiramate
- Valproate
- Vigabatrin
- Zonisamide


IMMUNOSUPPRESSANTS

- Cyclosporine
- Everolimus
- Mycophenolate
- Sirolimus
- Tacrolimus

NTI Criteria 2, 5 are adequate differentiators univariately 54 % of NTI's meet both criteria 2 and 5

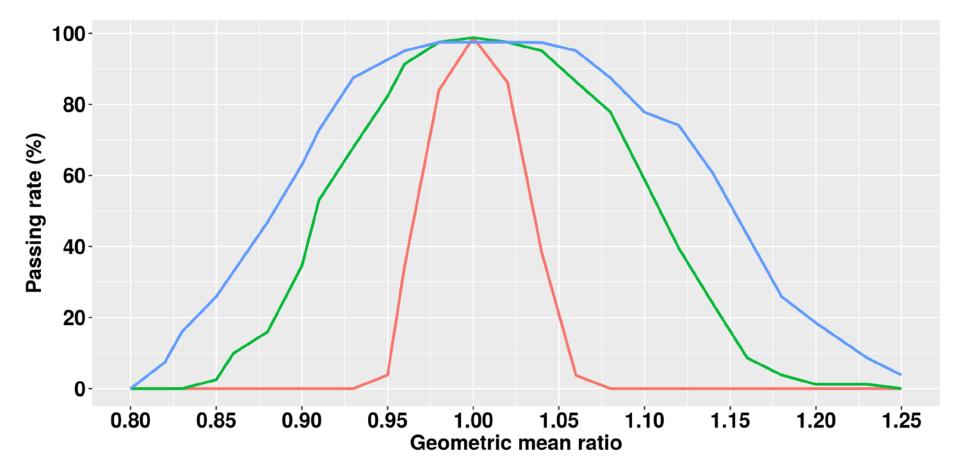
non NTI (n=21) NTI n=(13) non-classified (n=4)

Recommendation 3:

Limits for WSV_{Test} / WSV_{Reference} for NTI BE evaluation

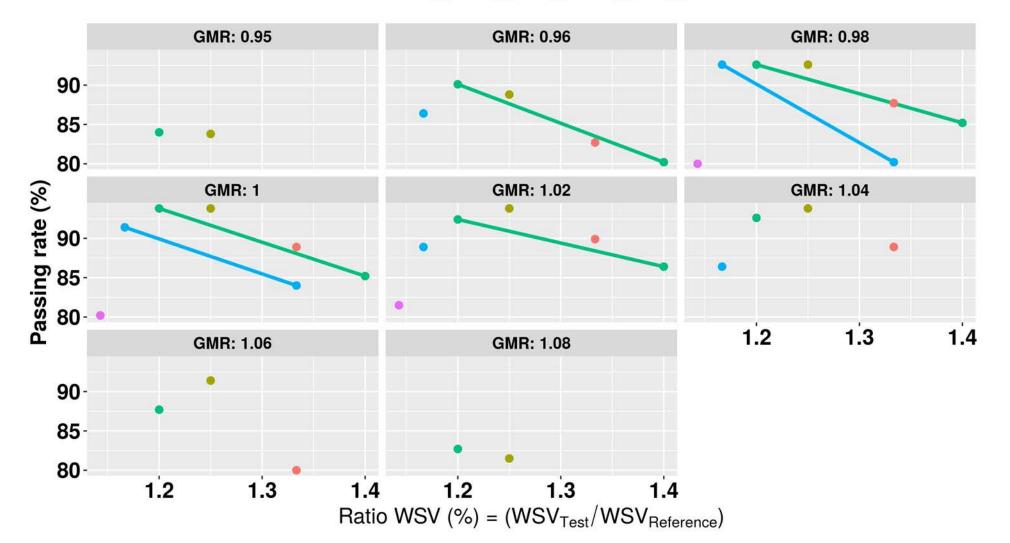
Simulation of a bioequivalence trial for a *hypothetical test and reference drug*

- Hypothetical drug pharmacokinetic parameters:
 - CL = 10 L/h, V = 500 L, $ka = 1 h^{-1}$, F = 100 %.
 - *Half-life* = 34 h , *Tmax* = 4 h.
- Difference in F between Reference and test drug:
 - Ftr ratio = **F test / F drug = GMR** = ranges from 80 % to 125 %.
- WSVr (reference drug) and WSVt (test drug) ranges each form:
 - 5 to 40 (% CV).
- Rich PK simulation (0 to 120h) for:
 - 24 subjects per unique scenario* of WSVr, WSVt and GMR permutation.
 - * **57,000** scenarios evaluated


Simulate a *bioequivalence trial* for a hypothetical test and reference drug

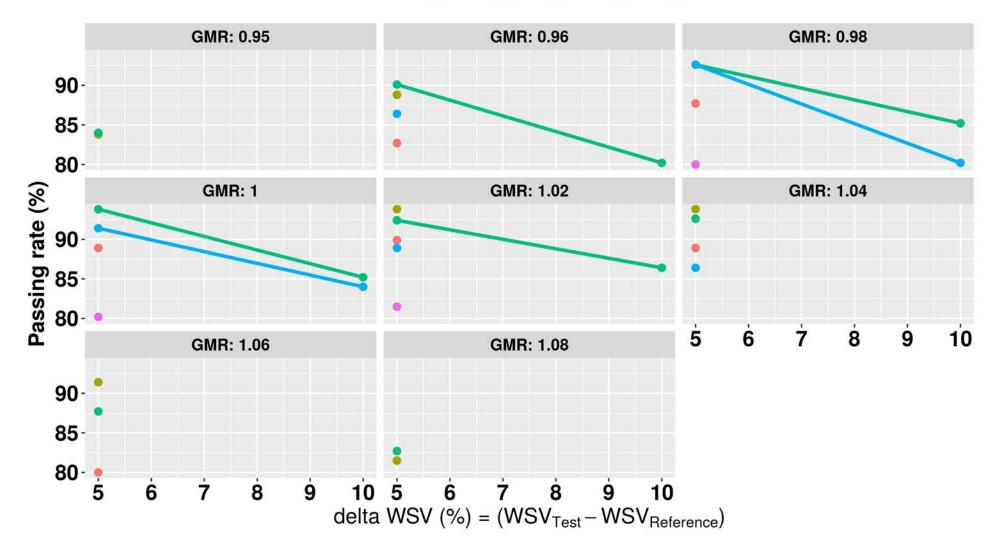
- 4 periods, 2 sequence bioequivalence trial: TRTR and RTRT.
- 100 trials per WSVr, WSVt and GMR permutation scenario.
- AUC_{0-inf} , $AUC_{0-tlast}$ and C_{max} were calculated.
- Bioequivalence test: Test and reference drugs are equivalent if the following three conditions passed:
 - RSABE
 - Upper limit of the 90% CI of WSVt / WSVr ratio ≤ 2.5
 - ABE
- Validate the BE trials simulations: BE passing rate (%) versus GMR.

Simulation validation – our setup replicates the FDA results


WSVr=WSVt= 5%, σ_D =0, n=24, 100 trials WSVr=WSVt= 15%, σ_D =0, n=24, 100 trials WSVr=WSVt= 25%, σ_D =0, n=24, 100 trials

Scenarios where WSV_{Test} > WSV_{Reference}: Maximum difference for 80% BE passing rate (*RSABE + ABE + WSV comparison*):

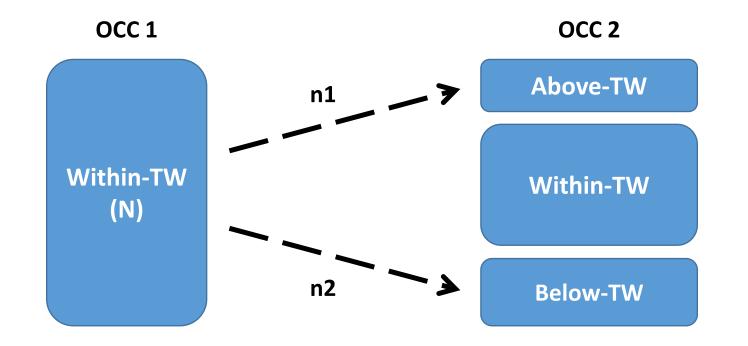
WSV_{Reference} - 0.15 - 0.2 - 0.25 - 0.3 - 0.35



19

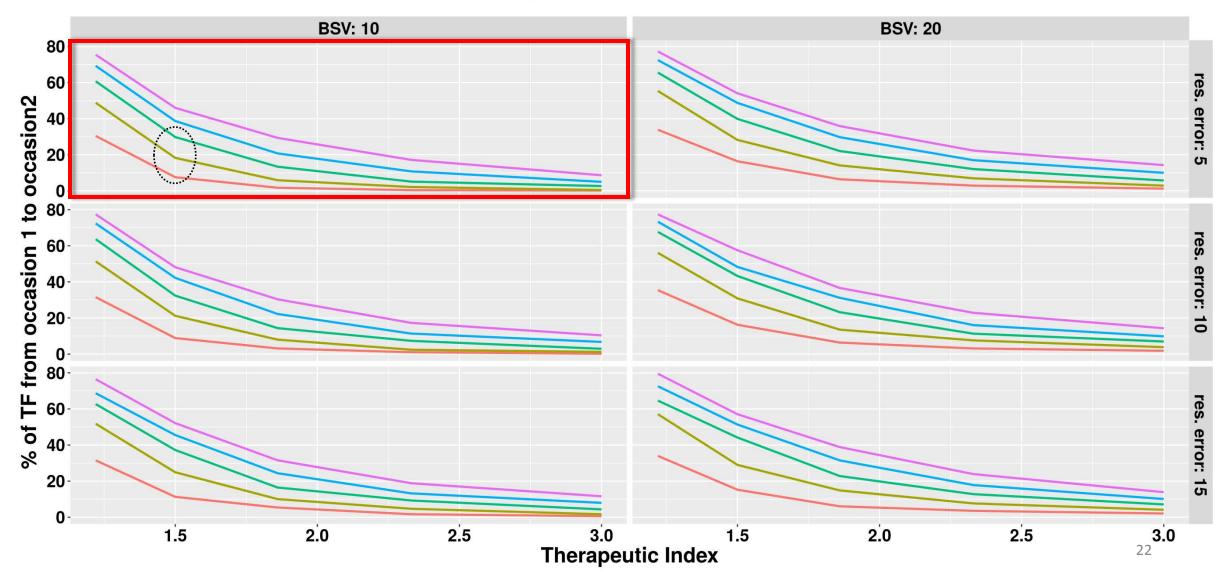
Scenarios where WSV_{Test} > WSV_{Reference}: Maximum difference for 80% BE passing rate (*RSABE + ABE + WSV comparison*):

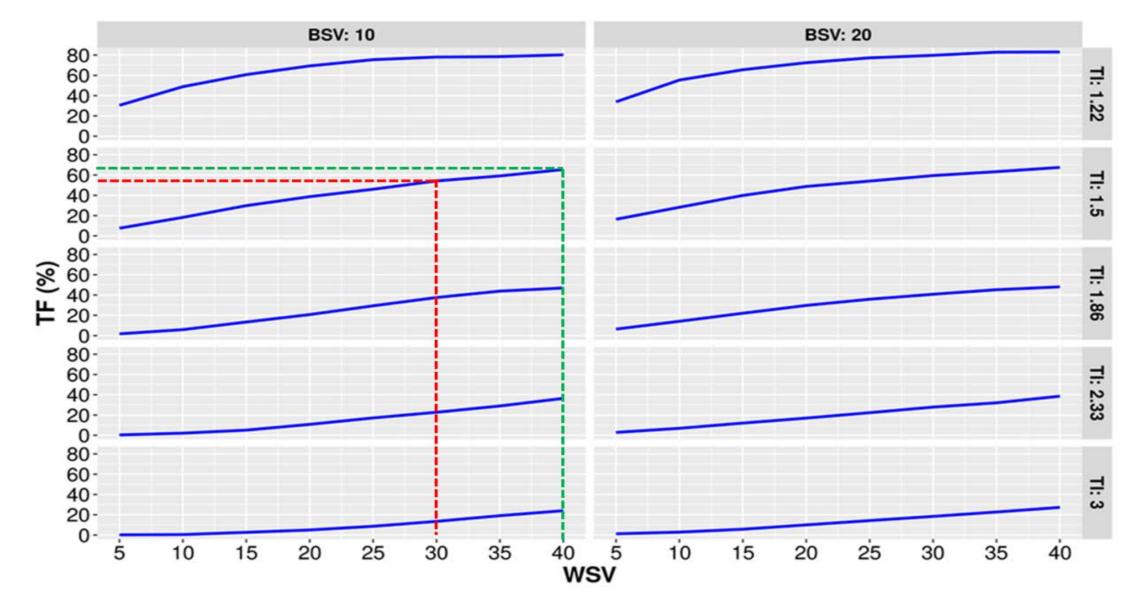
 $WSV_{Reference} - 0.15 - 0.2 - 0.25 - 0.3 - 0.35$



20

Impact of BOV on *Individual Response* after switch from OCC1 to OCC2 for a Reference drug


Proportion of Therapeutic Failure (% TF) = $\frac{Sum \ of \ subjects \ moved \ from \ within-TW => \ out \ of \ TW \ between \ occasions}{initial \ nb \ of \ subjects \ within-TW (at \ first \ occasion)}$


Individual Response – *Reference vs. Reference* – *at TI ≤ 2:BOV ↑ → %TF ↑*

BOV - 5 - 10 - 15 - 20 - 25

Up to 10 % TF at a dWSV of 10 %

Evaluation of Bioequivalence approach and impact of therapeutic success

- For bioequivalent *Test* and *Reference* drug according to the recommended **RABE + WSV comparison approach**:
 - A maximum to 10% difference between WSV_{Test} and WSV_{Reference} can be observed between bioequivalent (80% passing rate) *Test* and *Reference* drugs.
 - For such difference in WSV, where WSV_{Test} > WSV_{Reference}, the proportion of therapeutic failure (%TF= number of subject moving from within to outside a TW) cannot be higher than 10% for a drug with a TI of 1.5.

Recommendations

- 1. The rapeutic index \leq 3 is a reasonable cutoff to define NTI drugs.
- 2. Therapeutic index and small increments of dose adjustment are adequate for NTI classification.
- 3. To achieve a passing rate of 80% in a BE trial, the maximum observed $\frac{WSV_{test}}{WSV_{reference}}$ is 1.4