SOTYLIZE by is a Prescription medication manufactured, distributed, or labeled by Arbor Pharmaceuticals, Inc.. Drug facts, warnings, and ingredients follow.
SOTYLIZE is an antiarrhythmic indicated for:
Most common adverse reactions (>10%) seen with oral sotalol (dose related) are fatigue, bradycardia, dizziness, and headache (6.1)
To report SUSPECTED ADVERSE REACTIONS, contact Arbor Pharmaceuticals, LLC at 1-866-516-4950 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.
Revised: 7/2015
To minimize the risk of induced arrhythmia, patients initiated or re-initiated on oral sotalol, and patients who are converted from intravenous sotalol to oral administration should be hospitalized in a facility that can provide cardiac resuscitation, continuous electrocardiographic monitoring and calculations of creatinine clearance.
SOTYLIZE (sotalol hydrochloride) is indicated for the treatment of ventricular arrhythmias, such as sustained ventricular tachycardia, that in the judgment of the physician are life-threatening.
Upon initiation of SOTYLIZE, increasing doses, and prior to chronic outpatient use, evaluated response by a suitable method (e.g., PES or Holter monitoring) at steady-state blood levels of drug.
Limitation of Use
SOTYLIZE may not enhance survival in patients with ventricular arrhythmias. Because of the proarrhythmic effects of SOTYLIZE [see Warnings and Precautions (5.1)], including a 1.5 to 2% rate of Torsade de Pointes or new VT/VF in patients with either NSVT or supraventricular arrhythmias, its use in patients with less severe arrhythmias, even if the patients are symptomatic, is generally not recommended. Treatment of patients with asymptomatic ventricular premature contractions should be avoided.
To minimize the risk of induced arrhythmia, patients initiated or re-initiated on sotalol should be hospitalized for at least 3 days or until steady-state drug levels are achieved, in a facility that can provide cardiac resuscitation and continuous electrocardiographic monitoring. Initiate oral sotalol therapy in the presence of personnel trained in the management of serious ventricular arrhythmias. Perform a baseline ECG to determine the QT interval and measure and normalize serum potassium and magnesium levels before initiating therapy with sotalol. Measure serum creatinine and calculate an estimated creatinine clearance in order to establish the appropriate dosing interval for sotalol.
Start sotalol therapy only if the baseline QTc interval is <450 msec. During initiation and titration, monitor the QT interval after each dose. If the QTc interval prolongs to 500 msec or greater, reduce the dose, increase the interval between doses, or discontinue the drug.
Administer sotalol twice daily in patients with a creatinine clearance >60 mL/min or once daily in patients with creatinine clearance between 40 and 60 mL/min. Sotalol is not recommended in patients with a creatinine clearance <40 mL/min. The recommended initial oral dose of sotalol is 80 mg (once or twice daily) and is initiated and titrated as described below.
Patients to be discharged on SOTYLIZE therapy from an in-patient setting should have an adequate supply of SOTYLIZE, to allow uninterrupted therapy until the patient can fill a SOTYLIZE prescription.
Advise patients who miss a dose to take just the next dose at the usual time.
For patients discharged and taking compounded sotalol oral solution filled by the pharmacy, consider switching to SOTYLIZE while in an out-patient setting.
Table 1 shows the appropriate volume of SOTYLIZE solution for typical doses.
Dose | Volume of SOTYLIZE 5 mg/mL solution |
---|---|
80 mg | 16 mL |
120 mg | 24 mL |
160 mg | 32 mL |
240 mg | 48 mL |
320 mg | 64 mL |
The recommended initial dose of oral sotalol for the treatment of ventricular arrhythmia is 80 mg, once or twice daily based on creatinine clearance [see Dosage and Administration (2.1)]. The dose may be increased in increments of 80 mg per day every 3 days as needed, provided QTc < 500 msec. The usual therapeutic effect is observed with oral doses of 80 to 160 mg once or twice a day. Oral doses as high as 240-320 mg once or twice a day have been utilized in patients with refractory life-threatening arrhythmias.
Pediatrics
As in adults, initiate in the hospital after appropriate clinical assessment, gradually increase dose as required, and monitor QTc and heart rate.
For children aged 2 years and greater, with normal renal function, doses normalized for body surface area are appropriate for both initial and incremental dosing.
For initiation of treatment, 30 mg/m2 three times a day (90 mg/m2 total daily dose) is approximately equivalent to the initial 160 mg total daily dose for adults. Subsequent titration to a maximum of 60 mg/m2 (approximately equivalent to the 360 mg total daily dose for adults) can then occur. Allow at least 36 hours between dose increments to attain steady-state plasma concentrations of sotalol in patients with normal renal function.
For children aged 2 years or younger, reduce the dose as shown in Figure 1.
Figure 1: Factor For Dose Adjustment by Age
For a child with normal renal function aged 1 month, the initial starting dose would be (30 × 0.7) = 21 mg/m2, administered three times daily. For a child aged about 1 week, the initial starting dose should be multiplied by 0.3; the starting dose would be (30 × 0.3) = 9 mg/m2. Use similar calculations for dose titration.
Since the half-life of sotalol increases below about 2 years, time to steady-state will also increase. Thus, in neonates the time to steady-state may be a week or longer.
The recommended initial dose of oral sotalol for the treatment of symptomatic AFIB/AFL is 80 mg, once or twice daily based on creatinine clearance [see Dosage and Administration (2.1)]. If that dose level at steady-state does not acceptably reduce the time to recurrence of arrhythmia and is tolerated with QTc <520 msec, increase the dose to 160 mg orally once or twice a day every three days. In the U.S. multicenter dose-response study, 120 mg orally once or twice a day was found to be the most effective dose in prolonging the time to ECG-documented symptomatic recurrence of AFIB/AFL.
Sotalol elimination is predominantly via the kidney in the unchanged form. Use of sotalol in any age group with decreased renal function should be at lower doses or at increased intervals between doses. Monitoring of heart rate and QTc is most important and it will take much longer to reach steady-state with any dose and/or frequency of administration.
Ventricular arrhythmias
SOTYLIZE can cause serious ventricular arrhythmias, primarily Torsade de Pointes (TdP) type ventricular tachycardia, a polymorphic ventricular tachycardia associated with QT interval prolongation. QT interval prolongation is directly related to the concentration of sotalol. Factors such as reduced creatinine clearance, gender (female) and larger doses increase the risk of TdP. The risk of TdP can be reduced by adjustment of the sotalol dose according to creatinine clearance and by monitoring the ECG for excessive increases in the QT interval [see Dosage and Administration (2)].
Use with Drugs that Prolong QT Interval and Antiarrhythmic Agents
The use of SOTYLIZE in conjunction with other drugs that prolong the QT interval has not been studied and is not recommended. Such drugs include many antiarrhythmics, some phenothiazines, tricyclic antidepressants, certain oral macrolides and certain quinolone antibiotics. Class I or Class III antiarrhythmic agents should be withheld for at least three half-lives prior to dosing with sotalol. In clinical trials, sotalol was not administered to patients previously treated with oral amiodarone for >1 month in the previous three months. Class Ia antiarrhythmic drugs, such as disopyramide, quinidine and procainamide and other Class III drugs (e.g., amiodarone) are not recommended as concomitant therapy with sotalol because of their potential to prolong refractoriness. There is only limited experience with the concomitant use of Class Ib or Ic antiarrhythmics.
In studies of oral sotalol, the incidence of bradycardia (as determined by the investigators) in the supraventricular arrhythmia population treated with oral sotalol was 13%, and led to discontinuation in 2.4% of patients. Bradycardia itself increases the risk of Torsade de Pointes, so carefully monitor patients receiving concomitant digoxin.
In general, SOTYLIZE is not recommended in patients with sick sinus syndrome associated with symptomatic arrhythmias, because it may cause sinus bradycardia, sinus pauses or sinus arrest. In patients with AFIB and sinus node dysfunction, sotalol increases the risk of Torsade de Pointes, especially after cardioversion. Sotalol augments bradycardia following cardioversion. Patients with AFIB/AFL associated with the sick sinus syndrome may be treated with sotalol if they have an implanted pacemaker for control of bradycardia symptoms.
Sotalol produces significant reductions in both systolic and diastolic blood pressures and may result in hypotension, including decompensated heart failure. Monitor hemodynamics in patients with marginal cardiac compensation.
Oral sotalol has been used in a controlled trial following an acute myocardial infarction without evidence of increased mortality [see Clinical Studies (14.3)]. Although specific studies of its use in treating atrial arrhythmias after infarction have not been conducted, the usual precautions regarding heart failure, avoidance of hypokalemia, bradycardia or prolonged QT interval apply. Experience in the use of sotalol to treat ventricular arrhythmias in the early phase of recovery from acute MI is limited. In the first 2 weeks post-MI, careful dose titration is especially important, particularly in patients with markedly impaired ventricular function.
Hypersensitivity to catecholamines has been observed in patients withdrawn from beta-blocker therapy. Occasional cases of exacerbation of angina pectoris, arrhythmias and, in some cases, myocardial infarction have been reported after abrupt discontinuation of beta-blocker therapy. Therefore, when discontinuing chronically administered sotalol, particularly in patients with ischemic heart disease, carefully monitor the patient and consider the temporary use of an alternate beta-blocker if appropriate. If possible, the dosage of sotalol should be gradually reduced over a period of one to two weeks. If angina or acute coronary insufficiency develops, appropriate therapy should be instituted promptly. Patients should be warned against interruption or discontinuation of therapy without the physician's advice. Because coronary artery disease is common and may be unrecognized in patients receiving sotalol, abrupt discontinuation in patients with arrhythmias may unmask latent coronary insufficiency.
SOTYLIZE should not be used in patients with hypokalemia or hypomagnesemia prior to correction of imbalance, as these conditions increase the potential for Torsade de Pointes. Special attention should be given to electrolyte and acid-base balance in patients experiencing severe or prolonged diarrhea or patients receiving concomitant diuretic drugs.
Sotalol is eliminated principally via the kidneys through glomerular filtration and to a small degree by tubular secretion. There is a direct relationship between renal function, as measured by serum creatinine or creatinine clearance, and the elimination rate of sotalol [see Dosage and Administration (2)].
Patients with bronchospastic diseases should in general not receive beta-blockers. If SOTYLIZE is to be administered, use the smallest effective dose, to minimize inhibition of bronchodilation produced by endogenous or exogenous catecholamine stimulation of beta2 receptors.
Beta-blockade may mask some important premonitory signs of acute hypoglycemia (e.g., tachycardia) in patients with diabetes (especially labile diabetes) or with a history of episodes of spontaneous hypoglycemia.
Beta-blockade may mask certain clinical signs (e.g., tachycardia) of hyperthyroidism. Avoid abrupt withdrawal of SOTYLIZE which might exacerbate symptoms of hyperthyroidism, including thyroid storm.
While taking beta-blockers, patients with a history of anaphylactic reaction to a variety of allergens may have a more severe reaction on repeated challenge, either accidental, diagnostic, or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat the allergic reaction.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Adults:
Adverse reactions that are clearly related to sotalol are those which are typical of its Class II (beta-blocking) and Class III (cardiac action potential duration prolongation) effects. The common documented beta-blocking adverse reactions (bradycardia, dyspnea, and fatigue) and Class III effects (QT interval prolongation) are dose related.
Serious Adverse Reactions
SOTYLIZE can cause serious ventricular arrhythmias, primarily Torsade de Pointes (TdP) type ventricular tachycardia, a polymorphic ventricular tachycardia associated with QT interval prolongation. QT interval prolongation is directly related to the plasma level of sotalol. Factors such as reduced creatinine clearance, gender (female) and larger doses increase the risk of TdP [see Warnings and Precautions (5.1)].
Proarrhythmia in Atrial Fibrillation Patients. In eight controlled trials of patients with AFIB/AFL and other supraventricular arrhythmias (N=659) there were four cases of TdP reported (0.6%) during the controlled phase of treatment with oral sotalol.
Prolongation of the QT interval is dose related, increasing from baseline an average of 25, 40, and 50 msec in the 80, 120, and 160 mg groups, respectively, in the oral dose-response study [see Clinical Trials (14.2)].
Proarrhythmia in Ventricular Arrhythmia Patients. In patients with a history of sustained ventricular tachycardia, the incidence of Torsade de Pointes during oral sotalol treatment was 4% and worsened VT was about 1%; in patients with other less serious ventricular arrhythmias the incidence of Torsade de Pointes was 1% and new or worsened VT was about 0.7%. Additionally, in approximately 1% of patients, deaths were considered possibly drug related; such cases, although difficult to evaluate, may have been associated with proarrhythmic events. Torsade de Pointes arrhythmias in patients with VT/VF were dose related, as was the prolongation of QT (QTc) interval, as shown in Table 2 below.
Daily Dose (mg) | Incidence of Torsade de Pointes | Mean QTc * (msec) |
---|---|---|
( ) Number of patients assessed | ||
|
||
80 | 0 (69) | 463 (17) |
160 | 0.5 (832) | 467 (181) |
320 | 1.6 (835) | 473 (344) |
480 | 4.4 (459) | 483 (234) |
640 | 3.7 (324) | 490 (185) |
>640 | 5.8 (103) | 512 (62) |
Table 3 below relates the incidence of Torsade de Pointes to on-therapy QTc and change in QTc from baseline. It should be noted, however, that the highest on-therapy QTc was in many cases the one obtained at the time of the Torsade de Pointes event, so that the table overstates the predictive value of a high QTc.
On-Therapy QTc Interval (msec) | Incidence of Torsade de Pointes | Change in QTc Interval From Baseline (msec) | Incidence of Torsade de Pointes |
---|---|---|---|
( ) Number of patients assessed | |||
less than 500 | 1.3% (1787) | less than 65 | 1.6% (1516) |
500-525 | 3.4% (236) | 65-80 | 3.2% (158) |
525-550 | 5.6% (125) | 80-100 | 4.1% (146) |
>550 | 10.8% (157) | 100-130 | 5.2% (115) |
>130 | 7.1% (99) |
In addition to dose and presence of sustained VT, other risk factors for Torsade de Pointes were gender (females had a higher incidence), excessive prolongation of the QTc interval and history of cardiomegaly or congestive heart failure. Patients with sustained ventricular tachycardia and a history of congestive heart failure appear to have the highest risk for serious proarrhythmia (7%). Of the ventricular arrhythmia patients experiencing Torsade de Pointes, approximately two-thirds spontaneously reverted to their baseline rhythm. The others were either converted electrically (D/C cardioversion or overdrive pacing) or treated with other drugs [see Overdosage (10)]. It is not possible to determine whether some sudden deaths represented episodes of Torsade de Pointes, but in some instances sudden death did follow a documented episode of Torsade de Pointes. Although sotalol therapy was discontinued in most patients experiencing Torsade de Pointes, 17% were continued on a lower dose.
Other Adverse Reactions
In a pooled clinical trial population consisting of four placebo-controlled studies with 275 patients with AFIB/AFL treated with 160-320 mg of oral sotalol, the following adverse events were reported at least 2% more frequently in the 160-240 mg sotalol treated patients than in placebo patients (see Table 4). The data are presented by incidence of events in the oral sotalol and placebo groups by body system and daily dose.
Placebo | Oral Sotalol Total Daily Dose |
||
---|---|---|---|
Body System/ Adverse Reactions (Preferred Term) | N=282 | 160-240 N=153 | >240-320 N=122 |
CARDIOVASCULAR | |||
Bradycardia | 2.5 | 13.1 | 12.3 |
Abnormality ECG | 0.4 | 3.3 | 2.5 |
GASTROINTESTINAL | |||
Nausea/Vomiting | 5.3 | 7.8 | 5.7 |
Diarrhea | 2.1 | 5.2 | 5.7 |
GENERAL | |||
Fatigue | 8.5 | 19.6 | 18.9 |
Hyperhidrosis | 3.2 | 5.2 | 4.9 |
Weakness | 3.2 | 5.2 | 4.9 |
NERVOUS SYSTEM | |||
Dizziness | 12.4 | 16.3 | 13.1 |
In AFIB/AFL patients, discontinuation because of unacceptable adverse reactions was necessary in 17% of the patients, and occurred in 10% of patients less than two weeks after starting treatment. The most common adverse reactions leading to discontinuation of sotalol were: fatigue 4.6%, bradycardia 2.4%, proarrhythmia 2.2%, dyspnea 2%, and QT interval prolongation 1.4%.
In clinical trials involving 1292 patients with sustained VT/VF, the common adverse events were similar to those described for the AFIB/AFL population.
One case of peripheral neuropathy which resolved on discontinuation of sotalol and recurred when the patient was rechallenged with the drug was reported in an early dose tolerance study. Elevated blood glucose levels and increased insulin requirements can occur in diabetic patients.
Pediatric Patients:
In an unblinded multicenter trial of 25 patients with SVT and/or VT receiving daily doses of 30, 90 and 210 mg/m2 with dosing every 8 hours for a total of 9 doses, no Torsade de Pointes or other serious new arrhythmias were observed. One (1) patient, receiving 30 mg/m2 daily, was discontinued because of increased frequency of sinus pauses/bradycardia. Additional cardiovascular adverse events were seen at the 90 and 210 mg/m2 daily dose levels. They included QT prolongations (2 patients), sinus pauses/bradycardia (1 patient), increased severity of atrial flutter and reported chest pain (1 patient). Values for QTc ≥525 msec were seen in 2 patients at the 210 mg/m2 daily dose level. Serious adverse events including death, Torsade de Pointes, other proarrhythmias, high-degree A-V blocks and bradycardia have been reported in infants and/or children.
The following adverse reactions have been identified during post-approval use of sotalol. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to estimate reliably their frequency or establish a causal relationship to drug exposure.
Postmarketing experience with sotalol shows an adverse event profile similar to that described above from clinical trials. Voluntary reports since introduction include rare reports (less than one report per 10,000 patients) of: emotional liability, slightly clouded sensorium, incoordination, vertigo, paralysis, thrombocytopenia, eosinophilia, leukopenia, photosensitivity reaction, fever, pulmonary edema, hyperlipidemia, myalgia, pruritus, alopecia.
Proarrhythmic events were more common in sotalol treated patients also receiving digoxin; it is not clear whether this represents an interaction or is related to the presence of heart failure, a known risk factor for proarrhythmia, in the patients receiving digoxin.
Sotalol and calcium blocking drugs can be expected to have additive effects on atrioventricular conduction, ventricular function, and blood pressure.
Concomitant use of catecholamine-depleting drugs, such as reserpine and guanethidine, with a beta-blocker may produce an excessive reduction of resting sympathetic nervous tone. Monitor such patients for hypotension and marked bradycardia which may produce syncope.
Hyperglycemia may occur, and the dosage of insulin or antidiabetic drugs may require adjustment. Symptoms of hypoglycemia may be masked.
Beta-agonists such as albuterol, terbutaline and isoproterenol may have to be administered in increased dosages when used concomitantly with sotalol.
Beta-blocking drugs may potentiate the rebound hypertension sometimes observed after discontinuation of clonidine.
Sotalol has not been studied with other drugs that prolong the QT interval such as antiarrhythmics, some phenothiazines, tricyclic antidepressants, certain oral macrolides and certain quinolone antibiotics. Class I or Class III antiarrhythmic agents should be withheld for at least three half-lives prior to dosing with sotalol. In clinical trials, sotalol was not administered to patients previously treated with oral amiodarone for >1 month in the previous three months. Class Ia antiarrhythmic drugs such as disopyramide, quinidine and procainamide and other Class III drugs (e.g., amiodarone) are not recommended as concomitant therapy with sotalol because of their potential to prolong refractoriness [see Warnings and Precautions (5.1)]. There is only limited experience with the concomitant use of Class Ib or Ic antiarrhythmics.
Administration of oral sotalol within 2 hours of antacids containing aluminum oxide and magnesium hydroxide should be avoided because it may result in a reduction in Cmax and AUC of 26% and 20%, respectively, and consequently in a 25% reduction in the bradycardic effect at rest. Administration of the antacid two hours after oral sotalol has no effect on the pharmacokinetics or pharmacodynamics of sotalol.
Pregnancy Category B
There are no adequate and well-controlled studies in pregnant women. Sotalol crosses the placenta. In animal studies there was no increase in congenital anomalies, but an increase in early resorptions occurred at sotalol doses 18 times the maximum recommended human dose (MRHD, based on body surface area). Animal reproduction studies are not always predictive of human response.
Reproduction studies in rats and rabbits during organogenesis at sotalol doses 9 and 7 times the MRHD (based on body surface area), respectively, did not reveal any increase in congenital abnormalities. In rabbits, a sotalol dose 6 times the MRHD produced a slight increase in fetal death, but this was associated with maternal toxicity. This effect did not occur at a sotalol dose 3 times the MRHD. In rats, a sotalol dose 18 times the MRHD increased the number of early resorptions, while a dose of 2.5 times the MRHD produced no increase in early resorptions.
Sotalol is excreted in the milk of laboratory animals and has been reported to be present in human milk. Discontinue nursing or SOTYLIZE.
The safety and effectiveness of sotalol in children have not been established. However, the Class III electrophysiologic and beta-blocking effects, the pharmacokinetics, and the relationship between the effects (QTc interval and resting heart rate) and drug concentrations have been evaluated in children aged between 3 days and 12 years old [see Dosage and Administration (2.2) and Clinical Pharmacology (12)].
Impaired renal function in geriatric patients can increase the terminal elimination half-life, resulting in increased drug accumulation [see Clinical Pharmacology (12.3)].
Sotalol is eliminated principally via the kidneys through glomerular filtration and to a small degree by tubular secretion. There is a direct relationship between renal function, as measured by serum creatinine or creatinine clearance, and the elimination rate of sotalol [see Dosage and Administration (2)]. The dosing interval (time between divided doses) of sotalol should be modified when creatinine clearance is lower than 60 mL/min [see Dosage and Administration (2.4)]. Sotalol is contraindicated when creatinine clearance is less than 40 mL/min [see Contraindications (4)].
Intentional or accidental overdosage with sotalol has resulted in death.
Symptoms and Treatment of Overdosage:
The most common signs to be expected are bradycardia, congestive heart failure, hypotension, bronchospasm and hypoglycemia. In cases of massive intentional overdosage (2-16 grams) of sotalol the following clinical findings were seen: hypotension, bradycardia, cardiac asystole, prolongation of QT interval, Torsade de Pointes, ventricular tachycardia, and premature ventricular complexes. If overdosage occurs, therapy with sotalol should be discontinued and the patient observed closely. Because of the lack of protein binding, hemodialysis is useful for reducing sotalol plasma concentrations. Patients should be carefully observed until QT intervals are normalized and the heart rate returns to levels >50 bpm. The occurrence of hypotension following an overdose may be associated with an initial slow drug elimination phase (half-life of 30 hours) thought to be due to a temporary reduction of renal function caused by the hypotension. In addition, if required, the following therapeutic measures are suggested:
Bradycardia or Cardiac Asystole: Atropine, another anticholinergic drug, a beta-adrenergic agonist or transvenous cardiac pacing.
Heart Block: (second and third degree) transvenous cardiac pacemaker.
Hypotension: (depending on associated factors) epinephrine rather than isoproterenol or norepinephrine may be useful.
Bronchospasm: Aminophylline or aerosol beta-2-receptor stimulant.
Torsade de Pointes: DC cardioversion, magnesium sulfate, potassium replacement. Once Torsade de Pointes is terminated, transvenous cardiac pacing or an isoproterenol infusion to increase heart rate can be employed.
SOTYLIZE is an aqueous solution containing sotalol hydrochloride.
Sotalol hydrochloride is a white, crystalline solid with a molecular weight of 308.8. It is hydrophilic, soluble in water, propylene glycol and ethanol, but is only slightly soluble in chloroform. Chemically, sotalol hydrochloride is d,l-N-[4-[1-hydroxy-2-[(1-methylethyl) amino]ethyl]phenyl]methane-sulfonamide monohydrochloride. The molecular formula is C12H20N2O3S HCl and is represented by the following structural formula:
SOTYLIZE is a grape-flavored aqueous solution. Each mL contains 5 mg sotalol HCl. Inactive ingredients are sodium citrate, citric acid, sucralose, sodium benzoate and purified water.
Sotalol has both beta-adrenoreceptor blocking (Vaughan Williams Class II) and cardiac action potential duration prolongation (Vaughan Williams Class III) antiarrhythmic properties. Sotalol hydrochloride is a racemic mixture of two isomers, both of which have similar Class III antiarrhythmic effects, while the l-isomer is responsible for virtually all of the beta-blocking activity. The beta-blocking effect of sotalol is non-cardioselective, half maximal at an oral dose of about 80 mg/day and maximal at doses between 320 and 640 mg/day. Sotalol does not have partial agonist or membrane stabilizing activity. Although significant beta-blockade occurs at oral doses as low as 25 mg, significant Class III effects are seen only at daily doses of 160 mg and above.
In children, a Class III electrophysiological effect can be seen at daily doses of 210 mg/m2 body surface area (BSA). A reduction of the resting heart rate due to the beta-blocking effect of sotalol is observed at daily doses ≥90 mg/m2 in children.
Electrophysiology
Sotalol prolongs the plateau phase of the cardiac action potential in the isolated myocyte, as well as in isolated tissue preparations of ventricular or atrial muscle (Class III activity). In intact animals it slows heart rate, decreases AV nodal conduction and increases the refractory periods of atrial and ventricular muscle and conduction tissue.
In man, the Class II (beta-blockade) electrophysiological effects of sotalol are manifested by increased sinus cycle length (slowed heart rate), decreased AV nodal conduction and increased AV nodal refractoriness. The Class III electrophysiological effects in man include prolongation of the atrial and ventricular monophasic action potentials, and effective refractory period prolongation of atrial muscle, ventricular muscle, and atrio-ventricular accessory pathways (where present) in both the anterograde and retrograde directions. With oral doses of 160 to 640 mg/day, the surface ECG shows dose-related mean increases of 40-100 msec in QT and 10-40 msec in QTc. In a study of patients with atrial fibrillation/flutter (AFIB/AFL) receiving three different oral doses of sotalol given q12h (or q24h in patients with a reduced creatinine clearance), mean increases in QT intervals measured from 12-lead ECGs of 25 msec, 40 msec and 54 msec were found in the 80 mg, 120 mg, and 160 mg dose groups, respectively [see Warnings and Precautions (5.1)]. No significant alteration in QRS interval was observed.
In a small study (n=25) of patients with implanted defibrillators treated concurrently with sotalol, the average defibrillatory threshold was 6 joules (range 2-15 joules) compared to a mean of 16 joules for a non-randomized comparative group primarily receiving amiodarone.
In a dose-response trial comparing three dose levels of sotalol, 80 mg, 120 mg, and 160 mg with placebo given every 12 hours (or every 24 hours in patients with a reduced renal creatinine clearance) for the prevention of recurrence of symptomatic atrial fibrillation (AFIB)/flutter (AFL), the mean ventricular rate during recurrence of AFIB/AFL was 125, 107, 110 and 99 beats/min in the placebo, 80 mg, 120 mg and 160 mg dose groups, respectively (p<0.017 for each sotalol dose group versus placebo). In another placebo- controlled trial in which sotalol was titrated to a dose between 160 and 320 mg/day in patients with chronic AFIB, the mean ventricular rate during recurrence of AFIB was 107 and 84 beats/min in the placebo and sotalol groups, respectively (p<0.001).
Twenty-five children in an unblinded, multicenter trial with supraventricular (SVT) and/or ventricular (VT) tachyarrhythmias, aged between 3 days and 12 years (mostly neonates and infants), received an ascending titration regimen with daily doses of 30, 90 and 210 mg/m2 with dosing every 8 hours for a total of 9 doses. During steady-state, the respective average increases above baseline of the QTc interval, in msec (%), were 2(+1%), 14(+4%) and 29(+7%) msec at the 3 dose levels. The respective mean maximum increases above baseline of the QTc interval, in msec (%), were 23(+6%), 36(+9%) and 55(+14%) msec at the 3 dose levels. The steady-state percent increases in the RR interval were 3, 9 and 12%. The smallest children (BSA<0.33m2) showed a tendency for larger Class III effects (∆QTc) and an increased frequency of prolongations of the QTc interval as compared with the larger children (BSA≥0.33m2). The beta-blocking effects also tended to be greater in the smaller children (BSA<0.33m2). Both the Class III and beta-blocking effects of sotalol were linearly related with the plasma concentrations.
Hemodynamics
In a study of systemic hemodynamic function measured invasively in 12 patients with a mean LV ejection fraction of 37% and ventricular tachycardia (9 sustained and 3 non-sustained), a median dose of 160 mg twice daily of sotalol produced a 28% reduction in heart rate and a 24% decrease in cardiac index at 2 hours post-dosing at steady-state. Concurrently, systemic vascular resistance and stroke volume showed non-significant increases of 25% and 8%, respectively. Pulmonary capillary wedge pressure increased significantly from 6.4 mmHg to 11.8 mmHg in the 11 patients who completed the study. One patient was discontinued because of worsening congestive heart failure. Mean arterial pressure, mean pulmonary artery pressure and stroke work index did not significantly change. Exercise and isoproterenol induced tachycardia are antagonized by sotalol, and total peripheral resistance increases by a small amount.
In hypertensive patients, sotalol produces significant reductions in both systolic and diastolic blood pressures. Although sotalol is usually well-tolerated hemodynamically, in patients with marginal cardiac compensation, deterioration in cardiac performance may occur [see Warnings and Precautions (5.4)].
In healthy subjects, the oral bioavailability of sotalol is 90-100%. After oral administration, peak plasma concentrations are reached in 2.5 to 4 hours, and steady-state plasma concentrations are attained within 2-3 days (i.e., after 5-6 doses when administered twice daily). Over the oral dosage range 160-640 mg/day sotalol displays dose proportionality with respect to plasma concentrations. Distribution occurs to a central (plasma) and to a peripheral compartment, with a mean elimination half-life of 12 hours. Dosing every 12 hours results in trough plasma concentrations, which are approximately one-half of those at peak.
Sotalol does not bind to plasma proteins and is not metabolized. Sotalol shows very little intersubject variability in plasma levels. The pharmacokinetics of the d and l enantiomers of sotalol are essentially identical. Sotalol crosses the blood brain barrier poorly. Excretion is predominantly via the kidney in the unchanged form, and therefore lower doses are necessary in conditions of renal impairment [see Dosage and Administration (2.1)]. Age per se does not significantly alter the pharmacokinetics of sotalol, but impaired renal function in geriatric patients can increase the terminal elimination half-life, resulting in increased drug accumulation. The absorption of sotalol was reduced by approximately 20% compared to fasting when it was administered with a standard meal. Since sotalol is not subject to first-pass metabolism, patients with hepatic impairment show no alteration in clearance of sotalol.
The combined analysis of two unblinded, multicenter trials (a single dose and a multiple dose study) with 59 children, aged between 3 days and 12 years, showed the pharmacokinetics of sotalol to be first order. A daily dose of 30 mg/m2 of sotalol was administered in the single dose study and daily doses of 30, 90 and 210 mg/m2 were administered every 8 hours in the multi-dose study. After rapid absorption with peak levels occurring on average between 2-3 hours following administration, sotalol was eliminated with a mean half-life of 9.5 hours. Steady-state was reached after 1-2 days. The average peak to trough concentration ratio was 2. BSA was the most important covariate and more relevant than age for the pharmacokinetics of sotalol. The smallest children (BSA <0.33m2) exhibited a greater drug exposure (+59%) than the larger children who showed a uniform drug concentration profile. The intersubject variation for oral clearance was 22%.
No evidence of carcinogenic potential was observed in rats during a 24-month study at 137-275 mg/kg/day (approximately 30 times the maximum recommended human oral dose (MRHD) as mg/kg or 5 times the MRHD as mg/m2) or in mice, during a 24-month study at 4141-7122 mg/kg/day (approximately 450-750 times the MRHD as mg/kg or 36-63 times the MRHD as mg/m2).
Sotalol has not been evaluated in any specific assay of mutagenicity or clastogenicity.
No significant reduction in fertility occurred in rats at oral doses of 1000 mg/kg/day (approximately 100 times the MRHD as mg/kg or 9 times the MRHD as mg/m2) prior to mating, except for a small reduction in the number of offspring per litter.
Reproduction studies in rats and rabbits during organogenesis at 100 and 22 times the MRHD as mg/kg (9 and 7 times the MRHD as mg/m2), respectively, did not reveal any teratogenic potential associated with sotalol HCl. In rabbits, a high dose of sotalol HCl (160 mg/kg/day) at 16 times the MRHD as mg/kg (6 times the MRHD as mg/m2) produced a slight increase in fetal death likely due to maternal toxicity. Eight times the maximum dose (80 mg/kg/day or 3 times the MRHD as mg/m2) did not result in an increased incidence of fetal deaths. In rats, 1000 mg/kg/day sotalol HCl, 100 times the MRHD (18 times the MRHD as mg/m2), increased the number of early resorptions, while at 14 times the maximum dose (2.5 times the MRHD as mg/m2), no increase in early resorptions was noted. However, animal reproduction studies are not always predictive of human response.
Oral sotalol has been studied in life-threatening and less severe arrhythmias. In patients with frequent premature ventricular complexes (VPC), sotalol was significantly superior to placebo in reducing VPCs, paired VPCs and non-sustained ventricular tachycardia (NSVT); the response was dose-related through 640 mg/day with 80-85% of patients having at least a 75% reduction of VPCs. Sotalol was also superior, at the doses evaluated, to propranolol (40-80 mg TID) and similar to quinidine (200-400 mg QID) in reducing VPCs. In patients with life-threatening arrhythmias [sustained ventricular tachycardia/fibrillation (VT/VF)], sotalol was studied acutely [by suppression of programmed electrical stimulation (PES) induced VT and by suppression of Holter monitor evidence of sustained VT] and, in acute responders, chronically.
In a double-blind, randomized comparison of sotalol and procainamide given intravenously (total of 2 mg/kg sotalol vs. 19 mg/kg of procainamide over 90 minutes), sotalol suppressed PES induction in 30% of patients vs. 20% for procainamide (p=0.2).
In a randomized clinical trial [Electrophysiologic Study Versus Electrocardiographic Monitoring (ESVEM) Trial] comparing choice of antiarrhythmic therapy by PES suppression vs. Holter monitor selection (in each case followed by treadmill exercise testing) in patients with a history of sustained VT/VF who were also inducible by PES, the effectiveness acutely and chronically of sotalol hydrochloride was compared with 6 other drugs (procainamide, quinidine, mexiletine, propafenone, and imipramine). Overall response, limited to first randomized drug, was 39% for sotalol and 30% for the pooled other drugs. Acute response rate for first drug randomized using suppression of PES induction was 36% for sotalol vs. a mean of 13% for the other drugs. Using the Holter monitoring endpoint (complete suppression of sustained VT, 90% suppression of NSVT, 80% suppression of VPC pairs, and at least 70% suppression of VPCs), sotalol yielded 41% response vs. 45% for the other drugs combined. Among responders placed on long-term therapy identified acutely as effective (by either PES or Holter), sotalol, when compared to the pool of other drugs, had the lowest two-year mortality (13% vs. 22%), the lowest two-year VT recurrence rate (30% vs. 60%), and the lowest withdrawal rate (38% vs. about 75-80%). The most commonly used doses of sotalol hydrochloride in this trial were 320-480 mg/day (66% of patients), with 16% receiving 240 mg/day or less and 18% receiving 640 mg or more. It cannot be determined, however, in the absence of a controlled comparison of sotalol vs. no pharmacologic treatment (e.g., in patients with implanted defibrillators) whether sotalol response causes improved survival or identifies a population with a good prognosis.
Sotalol has been studied in patients with symptomatic AFIB/AFL in two principal studies, one in patients with primarily paroxysmal AFIB/AFL, the other in patients with primarily chronic AFIB.
In one study, a U.S. multicenter, randomized, placebo-controlled, double-blind, dose-response trial of patients with symptomatic primarily paroxysmal AFIB/AFL, three fixed dose levels of sotalol hydrochloride (80 mg, 120 mg and 160 mg) twice daily and placebo were compared in 253 patients. In patients with reduced creatinine clearance (40-60 mL/min) the same doses were given once daily. Patients were not randomized for the following reasons: QT >450 msec; creatinine clearance <40 mL/min; intolerance to beta-blockers; bradycardia-tachycardia syndrome in the absence of an implanted pacemaker; AFIB/AFL was asymptomatic or was associated with syncope, embolic CVA or TIA; acute myocardial infarction within the previous 2 months; congestive heart failure; bronchial asthma or other contraindications to beta-blocker therapy; receiving potassium losing diuretics without potassium replacement or without concurrent use of ACE-inhibitors; uncorrected hypokalemia (serum potassium <3.5 meq/L) or hypomagnesemia (serum magnesium <1.5 meq/L); received chronic oral amiodarone therapy for >1 month within previous 12 weeks; congenital or acquired long QT syndromes; history of Torsade de Pointes with other antiarrhythmic agents which increase the duration of ventricular repolarization; sinus rate <50 bpm during waking hours; unstable angina pectoris; receiving treatment with other drugs that prolong the QT interval; and AFIB/AFL associated with the Wolff-Parkinson-White (WPW) syndrome. If the QT interval increased to ≥520 msec (or JT ≥430 msec if QRS >100 msec) the drug was discontinued. The patient population in this trial was 64% male, and the mean age was 62 years. No structural heart disease was present in 43% of the patients. Doses were administered once daily in 20% of the patients because of reduced creatinine clearance.
Sotalol was shown to prolong the time to the first symptomatic, ECG-documented recurrence of AFIB/AFL, as well as to reduce the risk of such recurrence at both 6 and 12 months. The 120 mg dose was more effective than 80 mg, but 160 mg did not appear to have an added benefit. Note that these doses were given twice or once daily, depending on renal function. The results are shown in Figure 2, Table 5 and Table 6.
Placebo | Sotalol Dose | |||
---|---|---|---|---|
80 mg | 120 mg | 160 mg | ||
Note that columns do not add up to 100% due to discontinuations (D/C) for "other" reasons. | ||||
|
||||
Randomized | 69 | 59 | 63 | 62 |
On treatment in NSR at 12 months without recurrence* | 23% | 22% | 29% | 23% |
Recurrence*† | 67% | 58% | 49% | 42% |
D/C for AEs | 6% | 12% | 18% | 29% |
Placebo | Oral Sotalol Dose | |||
---|---|---|---|---|
80 mg | 120 mg | 160 mg | ||
p-value vs. placebo | p=0.325 | p=0.018 | p=0.029 | |
Relative Risk (RR) to placebo | 0.81 | 0.59 | 0.59 | |
Median time to recurrence (days) | 27 | 106 | 229 | 175 |
Discontinuation because of adverse events was dose related.
In a second multicenter, randomized, placebo-controlled, double-blind study of 6 months duration in 232 patients with chronic AFIB, oral sotalol was titrated over a dose range from 80 mg/day to 320 mg/day. The patient population of this trial was 70% male with a mean age of 65 years. Structural heart disease was present in 49% of the patients. All patients had chronic AFIB for >2 weeks but <1 year at entry with a mean duration of 4.1 months. Patients were excluded if they had significant electrolyte imbalance, QTc >460 msec, QRS >140 msec, any degree of AV block or functioning pacemaker, uncompensated cardiac failure, asthma, significant renal disease (estimated creatinine clearance <50 mL/min), heart rate <50 bpm, myocardial infarction or open heart surgery in past 2 months, unstable angina, infective endocarditis, active pericarditis or myocarditis, ≥ 3 DC cardioversions in the past, medications that prolonged QT interval, and previous amiodarone treatment. After successful cardioversion patients were randomized to receive placebo (n=114) or sotalol (n=118), at a starting dose of 80 mg twice daily. If the initial dose was not tolerated it was decreased to 80 mg once daily, but if it was tolerated it was increased to 160 mg twice daily. During the maintenance period 67% of treated patients received a dose of 160 mg twice daily, and the remainder received doses of 80 mg once daily (17%) and 80 mg twice daily (16%).
Tables 7 and 8 show the results of the trial. There was a longer time to ECG-documented recurrence of AFIB and a reduced risk of recurrence at 6 months compared to placebo.
Randomized | Oral Sotalol | Placebo |
---|---|---|
118 | 114 | |
|
||
On treatment in NSR at 6 months without recurrence* | 45% | 29% |
Recurrence*† | 49% | 67% |
D/C for AEs | 6% | 3% |
Death | 1% |
p-value vs. placebo | Oral Sotalol | Placebo |
---|---|---|
p=0.002 | ||
Relative Risk (RR) to placebo | 0.55 | |
Median time to recurrence (days) | >180 | 44 |
In a multicenter, double-blind, randomized study, the effect of sotalol 320 mg once daily was compared with that of placebo in 1456 patients (randomized 3:2, sotalol to placebo) surviving an acute myocardial infarction (MI). Treatment was started 5-14 days after infarction. Patients were followed for 12 months. The mortality rate was 7.3% in the sotalol group and 8.9% in the placebo group, not a statistically significant difference. Although the results do not show evidence of a benefit of sotalol in this population, they do not show an added risk in post MI patients receiving sotalol. There was, however, a suggestion of an early (i.e., first 10 days) excess mortality (3% on sotalol vs. 2% on placebo).
In a second small trial (n=17 randomized to sotalol) where sotalol was administered at high doses (e.g., 320 mg twice daily) to high-risk postinfarction patients (ejection fraction <40% and either >10 VPC/hr or VT on Holter), there were 4 fatalities and 3 serious hemodynamic/electrical adverse events within two weeks of initiating sotalol.
SOTYLIZE (sotalol hydrochloride) is supplied as follows:
See FDA-approved Patient Information.
QT Prolongation and Proarrhythmia
Advise patients to contact their healthcare provider in the event of syncope, pre-syncopal symptoms and cardiac palpitations such as fainting, dizziness or fast heartbeats. Advise patients that their healthcare provider will monitor their electrolytes and ECG during treatment [see Warnings and Precautions (5.1)].
Diarrhea, Unusual Sweating, Vomiting, Reduced Appetite, Excessive Thirst
Advise patients to contact their healthcare provider in the event of conditions conducive to electrolyte changes such as severe diarrhea, unusual sweating, vomiting, less appetite than normal or excessive thirst [see Warnings and Precautions (5.7)].
Administration
Advise patients to not change the SOTYLIZE dose prescribed by their healthcare provider.
Advise patients that, to be sure doses are accurately measured, doses for children and infants should be measured using an appropriate measuring device such as an oral syringe. Advise them that a teaspoon or tablespoon should not be used to measure SOTYLIZE doses since doing so might lead to confusion and the wrong dose.
Advise patients that they should not miss a dose, but if they do miss a dose they should not double the next dose to compensate for the missed dose; they should take the next dose at the regularly scheduled time [see Dosage and Administration (2)].
Advise patients to not interrupt or discontinue SOTYLIZE without their physician's advice, that they should get their prescription for sotalol filled and refilled on time so they do not interrupt treatment [see Dosage and Administration (2.1)].
Advise patients that they should not take SOTYLIZE if they also take another medicine that contains sotalol.
Advise patients that if overdose occurs or they take too much SOTYLIZE, take their SOTYLIZE medicine bottle with them and go to the nearest emergency room immediately. Overdoses can potentially cause life-threatening abnormal heart beats and possibly death.
Advise patients to contact their healthcare provider if they develop bradycardia.
Drug Interactions
Advise patients not to start taking other medications without first discussing new medications with their healthcare provider.
Antacids
Advise patients that they should avoid taking SOTYLIZE within 2 hours of taking antacids that contain aluminum oxide or magnesium hydroxide [see Drug Interactions (7.8)].
Rx Only
Manufactured for:
arbor
PHARMACEUTICALS, LLC
Atlanta, GA 30328
Manufactured by:
Patheon Inc.
Whitby Region Operations
111 Consumers Drive
Whitby, ON L1N 5Z5 Canada
Distributed by: Arbor Pharmaceuticals, LLC, Atlanta, GA 30328
SOTYLIZE® is a registered trademark of Arbor Pharmaceuticals, LLC
© 2015 Arbor Pharmaceuticals, LLC
SOT-PI-02
SOTYLIZE (so-tih-lize)
(sotalol hydrochloride)
oral solution
Read this Patient Information before you start taking SOTYLIZE and each time you get a refill. There may be new information. This information does not take the place of talking to your doctor about your medical condition or your treatment.
What is the most important information I should know about SOTYLIZE?
SOTYLIZE contains sotalol. Sotalol can cause serious side effects, including a type of abnormal heartbeat called Torsade de Pointes, that can lead to death.
Treatment with SOTYLIZE must be started or re-started in a hospital. You must have continuous monitoring of the electrical activity of your heart by electrocardiogram (ECG) and tests of your kidney function for at least the first 3 days of treatment. This will allow your doctor to determine the right dose of SOTYLIZE for you. It is important that when you go home, you take the exact dose of SOTYLIZE that your doctor prescribes for you.
Your doctor will continue to do ECGs to monitor your heart and check your kidney function, and also check the levels of body salts (electrolyte) in your blood, as needed during treatment with SOTYLIZE.
Call your doctor right away if you have any of the following symptoms that may be signs of an irregular heartbeat:
What is SOTYLIZE?
SOTYLIZE is a prescription medicine used:
Who should not take SOTYLIZE?
Do not take SOTYLIZE if you:
What should I tell my doctor before taking SOTYLIZE?
Before you take SOTYLIZE, tell your doctor if you:
Tell your doctor about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements. Taking SOTYLIZE with other medicines can cause serious side effects. Tell your doctor if you take another medicine that contains sotalol. You should not take SOTYLIZE if you also take another medicine that contains sotalol.
Know the medicines you take. Keep a list of them to show your doctor and pharmacist when you get a new medicine.
How should I take SOTYLIZE?
What are the possible side effects of SOTYLIZE?
SOTYLIZE can cause serious side effects, including:
The most common side effects of SOTYLIZE include:
Changes in the level of body salts (electrolytes) in your blood can lead to serious side effects during treatment with SOTYLIZE. Call your doctor if you have any of the following symptoms:
Tell your doctor if you have any side effect that bothers you or that does not go away.
These are not all the possible side effects of SOTYLIZE. For more information, ask your doctor or pharmacist.
Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.
How should I store SOTYLIZE?
Keep SOTYLIZE and all medicines out of the reach of children.
General information about the safe and effective use of SOTYLIZE
Medicines are sometimes prescribed for purposes other than those listed in a Patient Information leaflet. Do not use SOTYLIZE for a condition for which it was not prescribed. Do not give SOTYLIZE to other people, even if they have the same symptoms that you have. It may harm them.
If you would like more information, talk with your doctor. You can ask your pharmacist or doctor for information about SOTYLIZE that is written for health professionals.
For more information, go to www.SOTYLIZE.com or call 1-866-516-4950.
What are the ingredients in SOTYLIZE?
Active ingredient: sotalol hydrochloride
Inactive ingredients: sodium citrate, citric acid, sucralose, sodium benzoate, and purified water
This Patient Information has been approved by the U.S. Food and Drug Administration.
Manufactured for:
arbor
PHARMACEUTICALS, LLC
Atlanta, GA 30328
Manufactured by:
Patheon Inc.
Whitby Region Operations
111 Consumers Drive
Whitby, ON L1N 5Z5 Canada
Distributed by: Arbor Pharmaceuticals, LLC, Atlanta, GA 30328
Issued: 07/2015
SOTYLIZE is a registered trademark of Arbor Pharmaceuticals, LLC
© 2015 Arbor Pharmaceuticals, LLC
SOT-PPI-02
NDC: 24338-530-25
Sotylize®
(sotalol hydrochloride) oral solution
5 mg/mL
For Oral Use Only
250 mL
Distributed by:
arbor
PHARMACEUTICALS, LLC
Atlanta, GA 30328
SOTYLIZE
sotalol hydrochloride solution |
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
Labeler - Arbor Pharmaceuticals, Inc. (781796417) |
Mark Image Registration | Serial | Company Trademark Application Date |
---|---|
SOTYLIZE 86147411 4728651 Live/Registered |
Arbor Pharmaceuticals, LLC 2013-12-18 |