DEXMEDETOMIDINE injection, solution, concentrate

Dexmedetomidine by

Drug Labeling and Warnings

Dexmedetomidine by is a Prescription medication manufactured, distributed, or labeled by Medical Purchasing Solutions, LLC., Medical Purchasing Solutions, LLC. Drug facts, warnings, and ingredients follow.

Drug Details [pdf]

  • 1 INDICATIONS AND USAGE

    1.2 Procedural Sedation

    Dexmedetomidine Injection is indicated for sedation of non-intubated patients prior to and/or during surgical and other procedures.

  • 2 DOSAGE AND ADMINISTRATION

    2.1 Dosing Guidelines

    • Dexmedetomidine injection dosing should be individualized and titrated to desired clinical response.
    • Dexmedetomidine injection is not indicated for infusions lasting longer than 24 hours.
    • Dexmedetomidine injection should be administered using a controlled infusion device.

    2.2 Dosage Information

    Table 1: Dosage Information
    INDICATIONDOSAGE AND ADMINISTRATION
    Initiation of
    Procedural
    Sedation
    For adult patients: a loading infusion of one mcg/kg over 10 minutes. For less invasive procedures such as ophthalmic surgery, a loading infusion of 0.5 mcg/kg given over 10 minutes may be suitable.
    For awake fiberoptic intubation in adult patients: a loading infusion of one mcg/kg over 10 minutes.
    For patients over 65 years of age: a loading infusion of 0.5 mcg/kg over 10 minutes [see Use in Specific Populations ( 8.5)].
    For adult patients with impaired hepatic function: a dose reduction should be considered [see Use in Specific Populations ( 8.6), Clinical Pharmacology ( 12.3)] .
    Maintenance of
    Procedural
    Sedation
    For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/ hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/ hour. The rate of the maintenance infusion should be adjusted to achieve the targeted level of sedation.
    For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/ hour is recommended until the endotracheal tube is secured.
    For patients over 65 years of age: a dose reduction should be considered [see Use in Specific Populations ( 8.5)].
    For adult patients with impaired hepatic function: a dose reduction should be considered [see Use in Specific Populations ( 8.6), Clinical Pharmacology ( 12.3)] .

    2.3 Dosage Adjustment

    Due to possible pharmacodynamic interactions, a reduction in dosage of dexmedetomidine injection or other concomitant anesthetics, sedatives, hypnotics or opioids may be required when co-administered [see Drug Interactions ( 7.1)] .

    Dosage reductions may need to be considered for adult patients with hepatic impairment, and geriatric patients [see Warnings and Precautions ( 5.7), Use in Specific Populations ( 8.6), Clinical Pharmacology ( 12.3)] .

    2.4 Preparation of Solution

    Strict aseptic technique must always be maintained during handling of dexmedetomidine injection.

    Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

    Dexmedetomidine injection, 200 mcg per 2 mL (100 mcg per mL)

    Dexmedetomidine injection must be diluted with 0.9% sodium chloride injection to achieve required concentration (4 mcg per mL) prior to administration. Preparation of solutions is the same, whether for the loading dose or maintenance infusion.

    To prepare the infusion, withdraw 2 mL of dexmedetomidine injection, and add to 48 mL of 0.9% sodium chloride injection to a total of 50 mL. Shake gently to mix well.

    2.5 Administration with Other Fluids

    Dexmedetomidine injection infusion should not be co-administered through the same intravenous catheter with blood or plasma because physical compatibility has not been established.

    Dexmedetomidine injection has been shown to be incompatible when administered with the following drugs: amphotericin B, diazepam.

    Dexmedetomidine injection has been shown to be compatible when administered with the following intravenous fluids:

    • 0.9% sodium chloride in water
    • 5% dextrose in water
    • 20% mannitol
    • Lactated Ringer's solution
    • 100 mg/mL magnesium sulfate solution
    • 0.3% potassium chloride solution

    2.6 Compatibility with Natural Rubber

    Compatibility studies have demonstrated the potential for absorption of dexmedetomidine injection to some types of natural rubber. Although dexmedetomidine injection is dosed to effect, it is advisable to use administration components made with synthetic or coated natural rubber gaskets.

  • 3 DOSAGE FORMS AND STRENGTHS

    Dexmedetomidine Injection, USP

    Dexmedetomidine Injection, USP, 200 mcg per 2 mL dexmedetomidine (100 mcg per mL) in a glass vial. To be used after dilution.

  • 4 CONTRAINDICATIONS

    None

  • 5 WARNINGS AND PRECAUTIONS

    5.1 Drug Administration

    Dexmedetomidine should be administered only by persons skilled in the management of patients in the operating room setting. Due to the known pharmacological effects of dexmedetomidine, patients should be continuously monitored while receiving dexmedetomidine.

    5.2 Hypotension, Bradycardia, and Sinus Arrest

    Clinically significant episodes of bradycardia and sinus arrest have been reported with dexmedetomidine administration in young, healthy adult volunteers with high vagal tone or with different routes of administration including rapid intravenous or bolus administration.

    Reports of hypotension and bradycardia have been associated with dexmedetomidine infusion. Some of these cases have resulted in fatalities. If medical intervention is required, treatment may include decreasing or stopping the infusion of dexmedetomidine, increasing the rate of intravenous fluid administration, elevation of the lower extremities, and use of pressor agents. Because dexmedetomidine has the potential to augment bradycardia induced by vagal stimuli, clinicians should be prepared to intervene. The intravenous administration of anticholinergic agents (e.g., glycopyrrolate, atropine) should be considered to modify vagal tone. In clinical trials, glycopyrrolate or atropine were effective in the treatment of most episodes of dexmedetomidine-induced bradycardia. However, in some patients with significant cardiovascular dysfunction, more advanced resuscitative measures were required.

    Caution should be exercised when administering dexmedetomidine to patients with advanced heart block and/or severe ventricular dysfunction. Because dexmedetomidine decreases sympathetic nervous system activity, hypotension and/or bradycardia may be expected to be more pronounced in patients with hypovolemia, diabetes mellitus, or chronic hypertension and in elderly patients.

    In clinical trials where other vasodilators or negative chronotropic agents were co-administered with dexmedetomidine an additive pharmacodynamic effect was not observed. Nonetheless, caution should be used when such agents are administered concomitantly with dexmedetomidine.

    5.3 Transient Hypertension

    Transient hypertension has been observed primarily during the loading dose in association with the initial peripheral vasoconstrictive effects of dexmedetomidine. Treatment of the transient hypertension has generally not been necessary, although reduction of the loading infusion rate may be desirable.

    5.4 Arousability

    Some patients receiving dexmedetomidine have been observed to be arousable and alert when stimulated. This alone should not be considered as evidence of lack of efficacy in the absence of other clinical signs and symptoms.

    5.5 Withdrawal

    Procedural Sedation

    In adult subjects, withdrawal symptoms were not seen after discontinuation of short term infusions of dexmedetomidine (<6 hours).

    5.6 Tolerance and Tachyphylaxis

    Use of dexmedetomidine beyond 24 hours has been associated with tolerance and tachyphylaxis and a dose-related increase in adverse reactions [see Adverse Reactions ( 6.1)] .

    5.7 Hepatic Impairment

    Since dexmedetomidine clearance decreases with severity of hepatic impairment, dose reduction should be considered in patients with impaired hepatic function [see Dosage and Administration ( 2.2)] .

  • 6 ADVERSE REACTIONS

    6.1 Clinical Studies Experience

    Because clinical trials are conducted under widely varying conditions, adverse reactions rates observed in the clinical trials of a drug cannot be directly compared to rates in clinical trials of another drug and may not reflect the rates observed in practice.

    Use of dexmedetomidine has been associated with the following serious adverse reactions:

    • Hypotension, bradycardia and sinus arrest [see Warnings and Precautions ( 5.2)]
    • Transient hypertension [see Warnings and Precautions ( 5.3)]

    Most common treatment-emergent adverse reactions, occurring in greater than 2% of patients in procedural sedation studies include hypotension, bradycardia and dry mouth.

    Procedural Sedation

    Adverse reaction information is derived from the two trials for procedural sedation [see Clinical Studies ( 14.2)] in which 318 adult patients received dexmedetomidine. The mean total dose was 1.6 mcg/kg (range: 0.5 to 6.7), mean dose per hour was 1.3 mcg/kg/hr (range: 0.3 to 6.1) and the mean duration of infusion of 1.5 hours (range: 0.1 to 6.2). The population was between 18 to 93 years of age, ASA I-IV, 30% ≥65 years of age, 52% male and 61% Caucasian.

    Treatment-emergent adverse reactions occurring at an incidence of >2% are provided in Table 6. The most frequent adverse reactions were hypotension, bradycardia, and dry mouth [see Warnings and Precautions ( 5.2)] . Pre-specified criteria for the vital signs to be reported as adverse reactions are footnoted below the table. The decrease in respiratory rate and hypoxia was similar between dexmedetomidine and comparator groups in both studies.

    Table 6: Adverse Reactions With an Incidence >2%—Procedural Sedation Population

    1 Hypotension was defined in absolute and relative terms as Systolic blood pressure of <80 mmHg or ≤30% lower than pre-study drug infusion value, or Diastolic blood pressure of <50 mmHg.

    2 Respiratory depression was defined in absolute and relative terms as respiratory rate (RR) <8 beats per minute or >25% decrease from baseline.

    3 Bradycardia was defined in absolute and relative terms as <40 beats per minute or ≤30% lower than pre-study drug infusion value.

    4 Hypertension was defined in absolute and relative terms as Systolic blood pressure >180 mmHg or ≥30% higher than pre-study drug infusion value or Diastolic blood pressure of >100 mmHg.

    5 Tachycardia was defined in absolute and relative terms as >120 beats per minute or ≥30% greater than pre-study drug infusion value.

    6 Hypoxia was defined in absolute and relative terms as SpO 2 <90% or 10% decrease from baseline.

    Adverse EventDexmedetomidine
    (N = 318)
    (%)
    Placebo
    (N = 113)
    (%)
    Hypotension 154% 30%
    Respiratory Depression 237% 32%
    Bradycardia 314% 4%
    Hypertension 413% 24%
    Tachycardia 55% 17%
    Nausea 3% 2%
    Dry Mouth 3% 1%
    Hypoxia 62% 3%
    Bradypnea 2% 4%

    6.2 Postmarketing Experience

    The following adverse reactions have been identified during post approval use of dexmedetomidine. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

    Hypotension and bradycardia were the most common adverse reactions associated with the use of dexmedetomidine during post approval use of the drug.

    Table 7: Adverse Reactions Experienced During Post-approval Use of Dexmedetomidine
    System Organ ClassPreferred Term
    Blood and Lymphatic System Disorders Anemia
    Cardiac Disorders Arrhythmia, atrial fibrillation, atrioventricular block, bradycardia, cardiac arrest, cardiac disorder, extrasystoles, myocardial infarction, supraventricular tachycardia, tachycardia, ventricular arrhythmia, ventricular tachycardia
    Eye Disorders Photopsia, visual impairment
    Gastrointestinal Disorders Abdominal pain, diarrhea, nausea, vomiting
    General Disorders and Administration Site Conditions Chills, hyperpyrexia, pain, pyrexia, thirst
    Hepatobiliary Disorders Hepatic function abnormal, hyperbilirubinemia
    Investigations Alanine aminotransferase increased, aspartate aminotransferase increased, blood alkaline phosphatase increased, blood urea increased, electrocardiogram T wave inversion, gammaglutamyltransferase increased, electrocardiogram QT prolonged
    Metabolism and Nutrition Disorders Acidosis, hyperkalemia, hypoglycemia, hypovolemia, hypernatremia
    Nervous System Disorders Convulsion, dizziness, headache, neuralgia, neuritis, speech disorder
    Psychiatric Disorders Agitation, confusional state, delirium, hallucination, illusion
    Renal and Urinary Disorders Oliguria, polyuria
    Respiratory, Thoracic and Mediastinal Disorders Apnea, bronchospasm, dyspnea, hypercapnia, hypoventilation, hypoxia, pulmonary congestion, respiratory acidosis
    Skin and Subcutaneous Tissue Disorders Hyperhidrosis
    Surgical and Medical Procedures Light anesthesia
    Vascular Disorders Blood pressure fluctuation, hemorrhage, hypertension, hypotension
  • 7 DRUG INTERACTIONS

    7.1 Anesthetics, Sedatives, Hypnotics, Opioids

    Co-administration of dexmedetomidine with anesthetics, sedatives, hypnotics, and opioids is likely to lead to an enhancement of effects. Specific studies have confirmed these effects with sevoflurane, isoflurane, propofol, alfentanil, and midazolam. No pharmacokinetic interactions between dexmedetomidine and isoflurane, propofol, alfentanil and midazolam have been demonstrated. However, due to possible pharmacodynamic interactions, when co-administered with dexmedetomidine, a reduction in dosage of dexmedetomidine or the concomitant anesthetic, sedative, hypnotic or opioid may be required.

    7.2 Neuromuscular Blockers

    In one study of 10 healthy adult volunteers, administration of dexmedetomidine for 45 minutes at a plasma concentration of one ng/mL resulted in no clinically meaningful increases in the magnitude of neuromuscular blockade associated with rocuronium administration.

  • 8 USE IN SPECIFIC POPULATIONS

    8.1 Pregnancy

    Pregnancy Category C

    There are no adequate and well-controlled studies of dexmedetomidine use in pregnant women. In an in vitro human placenta study, placental transfer of dexmedetomidine occurred. In a study in the pregnant rat, placental transfer of dexmedetomidine was observed when radiolabeled dexmedetomidine was administered subcutaneously. Thus, fetal exposure should be expected in humans, and dexmedetomidine should be used during pregnancy only if the potential benefits justify the potential risk to the fetus.

    Teratogenic effects were not observed in rats following subcutaneous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 5 to 16) with doses up to 200 mcg/kg (representing a dose approximately equal to the maximum recommended human intravenous dose based on body surface area) or in rabbits following intravenous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 6 to 18) with doses up to 96 mcg/kg (representing approximately half the human exposure at the maximum recommended dose based on plasma area under the time-curve comparison). However, fetal toxicity, as evidenced by increased post-implantation losses and reduced live pups, was observed in rats at a subcutaneous dose of 200 mcg/kg. The no-effect dose in rats was 20 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on a body surface area comparison). In another reproductive toxicity study when dexmedetomidine was administered subcutaneously to pregnant rats at 8 and 32 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on a body surface area comparison) from gestation day 16 through weaning, lower offspring weights were observed. Additionally, when offspring of the 32 mcg/kg group were allowed to mate, elevated fetal and embryocidal toxicity and delayed motor development was observed in second generation offspring.

    8.2 Labor and Delivery

    The safety of dexmedetomidine during labor and delivery has not been studied.

    8.3 Nursing Mothers

    It is not known whether dexmedetomidine is excreted in human milk. Radio-labeled dexmedetomidine administered subcutaneously to lactating female rats was excreted in milk. Because many drugs are excreted in human milk, caution should be exercised when dexmedetomidine is administered to a nursing woman.

    8.4 Pediatric Use

    Safety and efficacy have not been established for Procedural Sedation in pediatric patients. The use of dexmedetomidine for procedural sedation in pediatric patients has not been evaluated.

    8.5 Geriatric Use

    Procedural Sedation

    A total of 131 patients in the clinical studies were 65 years of age and over. A total of 47 patients were 75 years of age and over. Hypotension occurred in a higher incidence in dexmedetomidine-treated patients 65 years or older (72%) and 75 years or older (74%) as compared to patients <65 years (47%). A reduced loading dose of 0.5 mcg/kg given over 10 minutes is recommended and a reduction in the maintenance infusion should be considered for patients greater than 65 years of age.

    8.6 Hepatic Impairment

    Since dexmedetomidine clearance decreases with increasing severity of hepatic impairment, dose reduction should be considered in patients with impaired hepatic function [see Dosage and Administration ( 2.2) and Clinical Pharmacology ( 12.3)] .

  • 9 DRUG ABUSE AND DEPENDENCE

    9.1 Controlled Substance

    Dexmedetomidine hydrochloride is not a controlled substance.

    9.3 Dependence

    The dependence potential of dexmedetomidine has not been studied in humans. However, since studies in rodents and primates have demonstrated that dexmedetomidine exhibits pharmacologic actions similar to those of clonidine, it is possible that dexmedetomidine may produce a clonidine-like withdrawal syndrome upon abrupt discontinuation [see Warnings and Precautions ( 5.5)] .

  • 10 OVERDOSAGE

    The tolerability of dexmedetomidine was studied in one study in which healthy adult subjects were administered doses at and above the recommended dose of 0.2 to 0.7 mcg/kg/hr. The maximum blood concentration achieved in this study was approximately 13 times the upper boundary of the therapeutic range. The most notable effects observed in two subjects who achieved the highest doses were first degree atrioventricular block and second degree heart block. No hemodynamic compromise was noted with the atrioventricular block and the heart block resolved spontaneously within one minute.

    One patient who received a loading bolus dose of undiluted dexmedetomidine (19.4 mcg/kg), had cardiac arrest from which he was successfully resuscitated.

  • 11 DESCRIPTION

    Dexmedetomidine Injection, USP is a sterile, nonpyrogenic solution suitable for intravenous infusion following dilution. Dexmedetomidine hydrochloride is the S-enantiomer of medetomidine and is chemically described as (+)-4-(S)-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole monohydrochloride. Dexmedetomidine hydrochloride has a molecular weight of 236.7 and the empirical formula is C 13H 16N 2HCl and the structural formula is:

    Structural Formula

    Dexmedetomidine hydrochloride is a white or almost white powder that is freely soluble in water and has a pKa of 7.1. Its partition coefficient in-octanol: water at pH 7.4 is 2.89.

    Dexmedetomidine Injection, USP is supplied as a clear, colorless, isotonic solution with a pH of 4.5 to 7.0. Each mL contains 118 mcg of dexmedetomidine hydrochloride equivalent to 100 mcg (0.1 mg) of dexmedetomidine and 9 mg of sodium chloride in water and is to be used after dilution. The solution is preservative-free and contains no additives or chemical stabilizers.

  • 12 CLINICAL PHARMACOLOGY

    12.1 Mechanism of Action

    Dexmedetomidine is a relatively selective alpha 2-adrenergic agonist with sedative properties. Alpha 2 selectivity is observed in animals following slow intravenous infusion of low and medium doses (10 to 300 mcg/kg). Both alpha 1 and alpha 2 activity is observed following slow intravenous infusion of high doses (≥1,000 mcg/kg) or with rapid intravenous administration.

    12.2 Pharmacodynamics

    In a study in healthy volunteers (N = 10), respiratory rate and oxygen saturation remained within normal limits and there was no evidence of respiratory depression when dexmedetomidine was administered by intravenous infusion at doses within the recommended dose range (0.2 to 0.7 mcg/kg/hr).

    12.3 Pharmacokinetics

    Following intravenous administration, dexmedetomidine exhibits the following pharmacokinetic parameters: a rapid distribution phase with a distribution half-life (t 1/2) of approximately 6 minutes; a terminal elimination half-life (t 1/2) of approximately 2 hours; and steady-state volume of distribution (V ss) of approximately 118 liters. Clearance is estimated to be approximately 39 L/h. The mean body weight associated with this clearance estimate was 72 kg.

    Dexmedetomidine exhibits linear pharmacokinetics in the dosage range of 0.2 to 0.7 mcg/kg/hr when administered by intravenous infusion for up to 24 hours. Table 8 shows the main pharmacokinetic parameters when dexmedetomidine was infused (after appropriate loading doses) at maintenance infusion rates of 0.17 mcg/kg/hr (target plasma concentration of 0.3 ng/mL) for 12 and 24 hours, 0.33 mcg/kg/hr (target plasma concentration of 0.6 ng/mL) for 24 hours, and 0.70 mcg/kg/hr (target plasma concentration of 1.25 ng/mL) for 24 hours.

    Table 8: Mean ± SD Pharmacokinetic Parameters

    *  Presented as harmonic mean and pseudo standard deviation.

    #  Mean C ss = Average steady-state concentration of dexmedetomidine. The mean C ss was calculated based on post-dose sampling from 2.5 to 9 hours samples for 12 hour infusion and post-dose sampling from 2.5 to 18 hours for 24 hour infusions.
    The loading doses for each of the above indicated groups were 0.5, 0.5, 1 and 2.2 mcg/kg, respectively.

    ParameterLoading Infusion (min)/Total Infusion Duration (hrs)
    10 min/12 hrs10 min/24 hrs10 min/24 hrs35 min/24 hrs
    Dexmedetomidine Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr)
    0.3/0.170.3/0.170.6/0.331.25/0.70
    t1/2*, hour1.78 ± 0.30 2.22 ± 0.59 2.23 ± 0.21 2.50 ± 0.61
    CL, liter/hour46.3 ± 8.3 43.1 ± 6.5 35.3 ± 6.8 36.5 ± 7.5
    Vss, liter88.7 ± 22.9 102.4 ± 20.3 93.6 ± 17.0 99.6 ± 17.8
    Avg Css#, ng/mL0.27 ± 0.05 0.27 ± 0.05 0.67 ± 0.10 1.37 ± 0.20

    Dexmedetomidine pharmacokinetic parameters after dexmedetomidine maintenance doses of 0.2 to 1.4 mcg/kg/hr for >24 hours were similar to the PK parameters after dexmedetomidine maintenance dosing for <24 hours in other studies. The values for clearance (CL), volume of distribution (V), and t 1/2 were 39.4 L/hr, 152 L, and 2.67 hours, respectively.

    Distribution

    The steady-state volume of distribution (V ss) of dexmedetomidine was approximately 118 liters. Dexmedetomidine protein binding was assessed in the plasma of normal healthy male and female subjects. The average protein binding was 94% and was constant across the different plasma concentrations tested. Protein binding was similar in males and females. The fraction of dexmedetomidine that was bound to plasma proteins was significantly decreased in subjects with hepatic impairment compared to healthy subjects.

    The potential for protein binding displacement of dexmedetomidine by fentanyl, ketorolac, theophylline, digoxin and lidocaine was explored in vitro, and negligible changes in the plasma protein binding of dexmedetomidine were observed. The potential for protein binding displacement of phenytoin, warfarin, ibuprofen, propranolol, theophylline and digoxin by dexmedetomidine was explored in vitro and none of these compounds appeared to be significantly displaced by dexmedetomidine.

    Metabolism

    Dexmedetomidine undergoes almost complete biotransformation with very little unchanged dexmedetomidine excreted in urine and feces. Biotransformation involves both direct glucuronidation as well as cytochrome P450 mediated metabolism. The major metabolic pathways of dexmedetomidine are: direct N-glucuronidation to inactive metabolites; aliphatic hydroxylation (mediated primarily by CYP2A6 with a minor role of CYP1A2, CYP2E1, CYP2D6 and CYP2C19) of dexmedetomidine to generate 3-hydroxy-dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxy-dexmedetomidine; and N-methylation of dexmedetomidine to generate 3-hydroxy N-methyl-dexmedetomidine, 3-carboxy N-methyl-dexmedetomidine, and dexmedetomidine- N-methyl O-glucuronide.

    Elimination

    The terminal elimination half-life (t 1/2) of dexmedetomidine is approximately 2 hours and clearance is estimated to be approximately 39 L/h. A mass balance study demonstrated that after nine days an average of 95% of the radioactivity, following intravenous administration of radiolabeled dexmedetomidine, was recovered in the urine and 4% in the feces. No unchanged dexmedetomidine was detected in the urine. Approximately 85% of the radioactivity recovered in the urine was excreted within 24 hours after the infusion. Fractionation of the radioactivity excreted in urine demonstrated that products of N-glucuronidation accounted for approximately 34% of the cumulative urinary excretion. In addition, aliphatic hydroxylation of parent drug to form 3-hydroxy-dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxylic acid-dexmedetomidine together represented approximately 14% of the dose in urine. N-methylation of dexmedetomidine to form 3-hydroxy N-methyl dexmedetomidine, 3-carboxy N-methyl dexmedetomidine, and N-methyl O-glucuronide dexmedetomidine accounted for approximately 18% of the dose in urine. The N-Methyl metabolite itself was a minor circulating component and was undetected in urine. Approximately 28% of the urinary metabolites have not been identified.

    Gender

    There was no observed difference in dexmedetomidine pharmacokinetics due to gender.

    Geriatrics

    The pharmacokinetic profile of dexmedetomidine was not altered by age. There were no differences in the pharmacokinetics of dexmedetomidine in young (18 to 40 years), middle age (41 to 65 years), and elderly (>65 years) subjects.

    Hepatic Impairment

    In subjects with varying degrees of hepatic impairment (Child-Pugh Class A, B, or C), clearance values for dexmedetomidine were lower than in healthy subjects. The mean clearance values for patients with mild, moderate, and severe hepatic impairment were 74%, 64% and 53% of those observed in the normal healthy subjects, respectively. Mean clearances for free drug were 59%, 51% and 32% of those observed in the normal healthy subjects, respectively.

    Although dexmedetomidine is dosed to effect, it may be necessary to consider dose reduction in subjects with hepatic impairment [see Dosage and Administration ( 2.2), Warnings and Precautions ( 5.7)] .

    Renal Impairment

    Dexmedetomidine pharmacokinetics (C max, T max, AUC, t 1/2, CL, and V ss) were not significantly different in patients with severe renal impairment (creatinine clearance: <30 mL/min) compared to healthy subjects.

    Drug Interactions

    In vitro studies: In vitro studies in human liver microsomes demonstrated no evidence of cytochrome P450 mediated drug interactions that are likely to be of clinical relevance.

  • 13 NONCLINICAL TOXICOLOGY

    13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

    Animal carcinogenicity studies have not been performed with dexmedetomidine.

    Dexmedetomidine was not mutagenic in vitro, in either the bacterial reverse mutation assay ( E. coli and Salmonella typhimurium) or the mammalian cell forward mutation assay (mouse lymphoma). Dexmedetomidine was clastogenic in the in vitro human lymphocyte chromosome aberration test with, but not without, rat S9 metabolic activation. In contrast, dexmedetomidine was not clastogenic in the in vitro human lymphocyte chromosome aberration test with or without human S9 metabolic activation. Although dexmedetomidine was clastogenic in an in vivo mouse micronucleus test in NMRI mice, there was no evidence of clastogenicity in CD-1 mice.

    Fertility in male or female rats was not affected after daily subcutaneous injections of dexmedetomidine at doses up to 54 mcg/kg (less than the maximum recommended human intravenous dose on a mcg/m 2 basis) administered from 10 weeks prior to mating in males, and 3 weeks prior to mating and during mating in females.

    13.2 Animal Pharmacology and/or Toxicology

    There were no differences in the adrenocorticotropic hormone (ACTH)-stimulated cortisol response in dogs following a single dose of dexmedetomidine compared to saline control. However, after continuous subcutaneous infusions of dexmedetomidine at 3 mcg/kg/hr and 10 mcg/kg/hr for one week in dogs (exposures estimated to be within the clinical range), the ACTH-stimulated cortisol response was diminished by approximately 27% and 40%, respectively, compared to saline-treated control animals indicating a dose-dependent adrenal suppression.

  • 14 CLINICAL STUDIES

    The safety and efficacy of dexmedetomidine has been evaluated in two randomized, double-blind, placebo-controlled multicenter clinical trials in 431 adult patients.

    14.2 Procedural Sedation

    The safety and efficacy of dexmedetomidine for sedation of non-intubated patients prior to and/or during surgical and other procedures was evaluated in two randomized, double-blind, placebo-controlled multicenter clinical trials. Study 1 evaluated the sedative properties of dexmedetomidine in patients having a variety of elective surgeries/procedures performed under monitored anesthesia care. Study 2 evaluated dexmedetomidine in patients undergoing awake fiberoptic intubation prior to a surgical or diagnostic procedure.

    In Study 1, the sedative properties of dexmedetomidine were evaluated by comparing the percent of patients not requiring rescue midazolam to achieve a specified level of sedation using the standardized Observer's Assessment of Alertness/Sedation Scale (see Table 12).

    Table 12: Observer's Assessment of Alertness/Sedation
    Assessment Categories
    ResponsivenessSpeechFacial ExpressionEyesComposite Score
    Responds readily to
    name spoken in
    normal tone
    Normal Normal Clear, no
    ptosis
    5 (alert)
    Lethargic response to
    name spoken in
    normal tone
    Mild slowing or
    thickening
    Mild relaxation Glazed or mild
    ptosis (less
    than half the eye)
    4
    Responds only after
    name is called loudly
    and/or repeatedly
    Slurring or
    prominent
    slowing
    Marked
    relaxation
    (slack jaw)
    Glazed and
    marked ptosis
    (half the eye or more)
    3
    Responds only after
    mild prodding or
    shaking
    Few
    recognizable
    words
    --2
    Does not respond to
    mild prodding or
    shaking
    ---1 (deep sleep)

    Patients were randomized to receive a loading infusion of either dexmedetomidine 1 mcg/kg, dexmedetomidine 0.5 mcg/kg, or placebo (normal saline) given over 10 minutes and followed by a maintenance infusion started at 0.6 mcg/kg/hr. The maintenance infusion of study drug could be titrated from 0.2 mcg/kg/hr to 1 mcg/kg/hr to achieve the targeted sedation score (Observer's Assessment of Alertness/Sedation Scale ≤4). Patients were allowed to receive rescue midazolam as needed to achieve and/or maintain an Observer's Assessment of Alertness/Sedation Scale ≤4. After achieving the desired level of sedation, a local or regional anesthetic block was performed. Demographic characteristics were similar between the dexmedetomidine and comparator groups. Efficacy results showed that dexmedetomidine was more effective than the comparator group when used to sedate non-intubated patients requiring monitored anesthesia care during surgical and other procedures (see Table 13).

    In Study 2, the sedative properties of dexmedetomidine were evaluated by comparing the percent of patients requiring rescue midazolam to achieve or maintain a specified level of sedation using the Ramsay Sedation Scale score ≥2 (see Table 9).

    Table 9: Ramsay Level of Sedation Scale
    Clinical ScoreLevel of Sedation Achieved
    6 Asleep, no response
    5 Asleep, sluggish response to light glabellar tap or loud auditory stimulus
    4 Asleep, but with brisk response to light glabellar tap or loud auditory stimulus
    3 Patient responds to commands
    2 Patient cooperative, oriented, and tranquil
    1 Patient anxious, agitated, or restless

    Patients were randomized to receive a loading infusion of dexmedetomidine 1 mcg/kg or placebo (normal saline) given over 10 minutes and followed by a fixed maintenance infusion of 0.7 mcg/kg/hr. After achieving the desired level of sedation, topicalization of the airway occurred. Patients were allowed to receive rescue midazolam as needed to achieve and/or maintain a Ramsay Sedation Scale ≥2. Demographic characteristics were similar between the dexmedetomidine and comparator groups. For efficacy results see Table 13.

    Table 13: Key Efficacy Results of Procedural Sedation Studies

    a Based on ITT population defined as all randomized and treated patients.

    b Normal approximation to the binomial with continuity correction.

    StudyLoading
    Infusion
    Treatment
    Arm
    Number
    of
    Patients
    Enrolleda
    % Not
    Requiring
    Midazolam Rescue
    Confidenceb
    Interval on
    the
    Difference
    vs. Placebo
    Mean (SD)
    Total Dose
    (mg) of
    Rescue
    Midazolam
    Required
    Confidenceb
    Intervals of
    the Mean
    Rescue Dose
    Study 1Dexmedetomidine
    0.5 mcg/kg
    134 40 37 (27, 48) 1.4 (1.7) -2.7
    (-3.4, -2.0)
    Dexmedetomidine
    1 mcg/kg
    129 54 51 (40, 62) 0.9 (1.5) -3.1
    (-3.8, -2.5)
    placebo 63 3 - 4.1 (3.0) -
    Study 2Dexmedetomidine
    1 mcg/kg
    55 53 39 (20, 57) 1.1 (1.5) -1.8
    (-2.7, -0.9)
    placebo 50 14 - 2.9 (3.0) -
  • 16 HOW SUPPLIED/STORAGE AND HANDLING

    Dexmedetomidine Injection, USP is supplied as follows:

    NDCDexmedetomidine Injection, USP (100 mcg per mL)Package Factor
    70860-605-02 200 mcg per 2 mL Single-Dose Vial 10 vials per carton
    70860-605-03 200 mcg per 2 mL Single-Dose Vial 25 vials per carton

    Dexmedetomidine Injection, USP is available in clear glass vials. The strength is based on the dexmedetomidine base.

    Storage Conditions

    Store at 25°C (77°F); excursions permitted between 15° and 30°C (59° and 86°F). [See USP Controlled Room Temperature.]

    Discard unused portion.

    Sterile, Nonpyrogenic, Preservative-free.
    The container closure is not made with natural rubber latex.

  • 17 PATIENT COUNSELING INFORMATION

    Dexmedetomidine Injection, USP is indicated for short-term intravenous sedation. Dosage must be individualized and titrated to the desired clinical effect. Blood pressure, heart rate and oxygen levels will be monitored both continuously during the infusion of Dexmedetomidine Injection, USP and as clinically appropriate after discontinuation.

    • When Dexmedetomidine Injection, USP is infused for more than 6 hours, patients should be informed to report nervousness, agitation, and headaches that may occur for up to 48 hours.

    • Additionally, patients should be informed to report symptoms that may occur within 48 hours after the administration of Dexmedetomidine Injection, USP such as: weakness, confusion, excessive sweating, weight loss, abdominal pain, salt cravings, diarrhea, constipation, dizziness or light-headedness.

    Athenex
    Mfd. for Athenex
    Schaumburg, IL 60173 (USA)
    By Jiangsu Hengrui Medicine Co., Ltd.
    Lianyungang, Jiangsu 222047, China
    ©2018 Athenex.

    Revised: October 2018

  • PRINCIPAL DISPLAY PANEL - VIAL LABEL

    Dexmedetomidine Injection, USP

    200 mcg (base) per 2 mL (100 mcg (base) per mL)

    Rx only

    For Intravenous Use

    MUST BE DILUTED

    Discard unused portion

    2 mL Single-Dose Vial

    PACKAGE LABEL – PRINCIPAL DISPLAY PANEL – Vial Label

  • PRINCIPAL DISPLAY PANEL - OUTER PACKAGE

    NDC: 71872-7150-1

    Dexmedetomidine Injection, USP

    1 - 2 mL Single-Dose Vial

    200 mcg (base) per 2 mL (100 mcg (base) per mL)

    Rx only

    For Intravenous Use

    MUST BE DILUTED

    Discard unused portion

    PDP

  • INGREDIENTS AND APPEARANCE
    DEXMEDETOMIDINE 
    dexmedetomidine injection, solution, concentrate
    Product Information
    Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC: 71872-7150(NDC:70860-605)
    Route of AdministrationINTRAVENOUS
    Active Ingredient/Active Moiety
    Ingredient NameBasis of StrengthStrength
    DEXMEDETOMIDINE HYDROCHLORIDE (UNII: 1018WH7F9I) (DEXMEDETOMIDINE - UNII:67VB76HONO) DEXMEDETOMIDINE100 ug  in 1 mL
    Inactive Ingredients
    Ingredient NameStrength
    SODIUM CHLORIDE (UNII: 451W47IQ8X)  
    WATER (UNII: 059QF0KO0R)  
    Packaging
    #Item CodePackage DescriptionMarketing Start DateMarketing End Date
    1NDC: 71872-7150-11 in 1 BAG01/08/2019
    12 mL in 1 VIAL; Type 0: Not a Combination Product
    Marketing Information
    Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
    ANDAANDA20906503/01/2018
    Labeler - Medical Purchasing Solutions, LLC. (601458529)
    Establishment
    NameAddressID/FEIBusiness Operations
    Medical Purchasing Solutions, LLC601458529repack(71872-7150)

  • © 2024 FDA.report
    This site is not affiliated with or endorsed by the FDA.