FLUCONAZOLE powder, for suspension

Fluconazole by

Drug Labeling and Warnings

Fluconazole by is a Prescription medication manufactured, distributed, or labeled by West-Ward Pharmaceuticals Corp., West-Ward Columbus Inc.. Drug facts, warnings, and ingredients follow.

Drug Details [pdf]

Microbiology

Mechanismof Action: Fluconazole is a highly selective inhibitor of fungal cytochrome P450 dependent enzyme lanosterol 14-α-demethylase. This enzyme functions to convert lanosterol to ergosterol. The subsequent loss of normal sterols correlates with the accumulation of 14-α-methyl sterols in fungi and may be responsible for the fungistatic activity of fluconazole. Mammalian cell demethylation is much less sensitive to fluconazole inhibition.

Resistance: A potential for development of resistance to fluconazole is well known. Fungal isolates exhibiting reduced susceptibility to other azoles may also show reduced susceptibility to fluconazole. The frequency of drug resistance development for the various fungi for which this drug is indicated is not known.

Fluconazole resistance may arise from a modification in the quality or quantity of the target enzyme (lanosterol 14-α-demethylase), reduced access to the drug target, or some combination of these mechanisms.

Point mutations in the gene (ERG11) encoding for the target enzyme lead to an altered target with decreased affinity for azoles. Overexpression of ERG11 results in the production of high concentrations of the target enzyme, creating the need for higher intracellular drug concentrations to inhibit all of the enzyme molecules in the cell.

The second major mechanism of drug resistance involves active efflux of fluconazole out of the cell through the activation of two types of multidrug efflux transporters; the major facilitators (encoded by MDR genes) and those of the ATP-binding cassette superfamily (encoded by CDR genes). Upregulation of the MDR gene leads to fluconazole resistance, whereas, upregulation of CDR genes may lead to resistance to multiple azoles.

Resistance in Candida glabrata usually includes upregulation of CDR genes resulting in resistance to multiple azoles. For an isolate where the minimum inhibitory concentration (MIC) is categorized as Intermediate (16 to 32 mcg/mL), the highest fluconazole dose is recommended.

Candida krusei should be considered to be resistant to fluconazole. Resistance in C. krusei appears to be mediated by reduced sensitivity of the target enzyme to inhibition by the agent.

There have been reports of cases of superinfection with Candida species other than C. albicans, which are often inherently not susceptible to fluconazole (e.g., Candida krusei). Such cases may require alternative antifungal therapy.

Antimicrobial Activity: Fluconazole has been shown to be active against most isolates of the following microorganisms both in vitro and in clinical infections.

Candida albicans

Candida glabrata (Many isolates are intermediately susceptible)

Candida parapsilosis

Candida tropicalis

Cryptococcus neoformans

The following in vitro data are available, but their clinical significance is unknown. At least 90% of the following fungi exhibit an in vitro MIC less than or equal to the susceptible breakpoint for fluconazole (https://www.fda.gov/STIC) against isolates of similar genus or organism group. However, the effectiveness of fluconazole in treating clinical infections due to these fungi has not been established in adequate and well-controlled clinical trials.

Candida dubliniensis

Candida guilliermondii

Candida kefyr

Candida lusitaniae

Candida krusei should be considered to be resistant to fluconazole. Resistance in C. krusei appears to be mediated by reduced sensitivity of the target enzyme to inhibition by the agent.

There have been reports of cases of superinfection with Candida species other than C. albicans, which are often inherently not susceptible to fluconzole (e.g., Candida krusei). Such cases may require alternative antifungal therapy.

Susceptibility Testing 

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.

  • INDICATIONS AND USAGE

    Fluconazole for Oral Suspension, USP is indicated for the treatment of:

    Prophylaxis: Fluconazole is also indicated to decrease the incidence of candidiasis in patients undergoing bone marrow transplantation who receive cytotoxic chemotherapy and/or radiation therapy.

    Specimens for fungal culture and other relevant laboratory studies (serology, histopathology) should be obtained prior to therapy to isolate and identify causative organisms. Therapy may be instituted before the results of the cultures and other laboratory studies are known; however, once these results become available, anti-infective therapy should be adjusted accordingly.

  • CLINICAL STUDIES

    Cryptococcal meningitis

    In a multicenter study comparing fluconazole (200 mg/day) to amphotericin B (0.3 mg/kg/day) for treatment of cryptococcal meningitis in patients with AIDS, a multivariate analysis revealed three pretreatment factors that predicted death during the course of therapy: abnormal mental status, cerebrospinal fluid cryptococcal antigen titer greater than 1:1024, and cerebrospinal fluid white blood cell count of less than 20 cells/mm3. Mortality among high risk patients was 33% and 40% for amphotericin B and fluconazole patients, respectively (p=0.58), with overall deaths 14% (9 of 63 subjects) and 18% (24 of 131 subjects) for the 2 arms of the study (p=0.48). Optimal doses and regimens for patients with acute cryptococcal meningitis and at high risk for treatment failure remain to be determined. (Saag, et al. N Engl J Med 1992; 326:83-9.)

    Vaginal candidiasis

    Two adequate and well-controlled studies were conducted in the U.S. using the 150 mg tablet. In both, the results of the fluconazole regimen were comparable to the control regimen (clotrimazole or miconazole intravaginally for 7 days) both clinically and statistically at the one month post-treatment evaluation.

    The therapeutic cure rate, defined as a complete resolution of signs and symptoms of vaginal candidiasis (clinical cure), along with a negative KOH examination and negative culture for Candida (microbiologic eradication), was 55% in both the fluconazole group and the vaginal products group.

    Fluconazole PO 150 mg tablet

    Vaginal Product qhs x 7 days

    Enrolled

    448

    422

    Evaluable at Late Follow-up

    347 (77%)

    327 (77%)

    Clinical cure

    239/347 (69%)

    235/327 (72%)

    Mycologic eradication

    213/347 (61%)

    196/327 (60%)

    Therapeutic cure

    190/347 (55%)

    179/327 (55%)

    Approximately three-fourths of the enrolled patients had acute vaginitis (<4 episodes/12 months) and achieved 80% clinical cure, 67% mycologic eradication, and 59% therapeutic cure when treated with a 150 mg fluconazole tablet administered orally. These rates were comparable to control products. The remaining one-fourth of enrolled patients had recurrent vaginitis (>4 episodes/12 months) and achieved 57% clinical cure, 47% mycologic eradication, and 40% therapeutic cure. The numbers are too small to make meaningful clinical or statistical comparisons with vaginal products in the treatment of patients with recurrent vaginitis.

    Substantially more gastrointestinal events were reported in the fluconazole group compared to the vaginal product group. Most of the events were mild to moderate. Because fluconazole was given as a single dose, no discontinuations occurred.

    Parameter

    Fluconazole PO

    Vaginal Products

    Evaluable patients

    448

    422

    With any adverse event

    141 (31%)

    112 (27%)

    Nervous System

    90 (20%)

    69 (16%)

    Gastrointestinal

    73 (16%)

    18 (4%)

    With drug-related event

    117 (26%)

    67 (16%)

    Nervous System

    61 (14%)

    29 (7%)

    Headache

    58 (13%)

    28 (7%)

    Gastrointestinal

    68 (15%)

    13 (3%)

    Abdominal pain

    25 (6%)

    7 (2%)

    Nausea

    30 (7%)

    3 (1%)

    Diarrhea

    12 (3%)

    2 (<1%)

    Application site event

    0 (0%)

    19 (5%)

    Taste Perversion

    6 (1%)

    0 (0%)

    Pediatric Studies

    Oropharyngeal candidiasis: An open-label, comparative study of the efficacy and safety of fluconazole (2 to 3 mg/kg/day) and oral nystatin (400,000 I.U. 4 times daily) in immunocompromised children with oropharyngeal candidiasis was conducted. Clinical and mycological response rates were higher in the children treated with fluconazole.

    Clinical cure at the end of treatment was reported for 86% of fluconazole-treated patients compared to 46% of nystatin treated patients. Mycologically, 76% of fluconazole treated patients had the infecting organism eradicated compared to 11% for nystatin treated patients.

    Fluconazole

    Nystatin

    Enrolled

    96

    90

    Clinical Cure

    76/88 (86%)

    36/78 (46%)

    Mycological eradication1

    55/72 (76%)

    6/54 (11%)

    The proportion of patients with clinical relapse 2 weeks after the end of treatment was 14% for subjects receiving fluconazole and 16% for subjects receiving nystatin. At 4 weeks after the end of treatment, the percentages of patients with clinical relapse were 22% for fluconazole and 23% for nystatin.

  • CONTRAINDICATIONS

    Fluconazole for Oral Suspension USP is contraindicated in patients who have shown hypersensitivity to fluconazole or to any of its excipients. There is no information regarding cross-hypersensitivity between fluconazole and other azole antifungal agents. Caution should be used in prescribing fluconazole to patients with hypersensitivity to other azoles. Co-administration of terfenadine is contraindicated in patients receiving fluconazole at multiple doses of 400 mg/day or higher based upon results of a multiple dose interaction study. Co-administration of other drugs known to prolong the QT interval and which are metabolized via the enzyme CYP3A4 such as cisapride, astemizole, erythromycin, pimozide, and quinidine are contraindicated in patients receiving fluconazole (See CLINICAL PHARMACOLOGY: Drug Interaction Studies and PRECAUTIONS).

  • WARNINGS

  • PRECAUTIONS

    General

    Some azoles, including fluconazole, have been associated with prolongation of the QT interval on the electrocardiogram. Fluconazole causes QT prolongation via the inhibition of Rectifier Potassium Channel current (Ikr). The QT prolongation caused by other medicinal products (such as amiodarone) may be amplified via the inhibition of cytochrome P450 (CYP) 3A4 (see PRECAUTIONS, Drug Interactions). During post-marketing surveillance, there have been rare cases of QT prolongation and torsade de pointes in patients taking fluconazole. Most of these reports involved seriously ill patients with multiple confounding risk factors, such as structural heart disease, electrolyte abnormalities, and concomitant medications that may have been contributory. Patients with hypokalemia and advanced cardiac failure are at an increased risk for the occurrence of life-threatening ventricular arrhythmias and torsade de pointes.

    Fluconazole should be administered with caution to patients with these potentially proarrhythmic conditions.

    Concomitant use of fluconazole and erythromycin has the potential to increase the risk of cardiotoxicity (prolonged QT interval, torsade de pointes) and consequently sudden heart death. This combination should be avoided.

    Fluconazole should be administered with caution to patients with renal dysfunction.

    Adrenal insufficiency has been reported in patients receiving azoles, including fluconazole. Reversible cases of adrenal insufficiency have been reported in patients receiving fluconazole.

    Fluconazole for Oral Suspension contains sucrose and should not be used in patients with hereditary fructose, glucose/galactose malabsorption, and sucrase-isomaltase deficiency.

    When driving vehicles or operating machines, it should be taken into account that occasionally dizziness or seizures may occur.

    Single Dose

    The convenience and efficacy of the single dose oral tablet of fluconazole regimen for the treatment of vaginal yeast infections should be weighed against the acceptability of a higher incidence of drug related adverse events with fluconazole (26%) versus intravaginal agents (16%) in U.S. comparative clinical studies (See ADVERSE REACTIONS and CLINICAL STUDIES).

    Drug Interactions

    (See CONTRAINDICATIONS). Fluconazole is a moderate CYP2C9 and CYP3A4 inhibitor. Fluconazole is also a strong inhibitor of CYP2C19. Patients treated with fluconazole, who are also concomitantly treated with drugs with a narrow therapeutic window metabolized through CYP2C9 and CYP3A4, should be monitored for adverse reactions associated with the concomitantly administered drugs. In addition to the observed/documented interactions mentioned below, there is a risk of increased plasma concentration of other compounds metabolized by CYP2C9, CYP2C19 and CYP3A4 co-administered with fluconazole. Therefore, caution should be exercised when using these combinations and the patients should be carefully monitored. The enzyme inhibiting effect of fluconazole persists 4 to 5 days after discontinuation of fluconazole treatment due to the long half-life of fluconazole. Clinically or potentially significant drug interactions between fluconazole and the following agents/classes have been observed and are described in greater detail below:

    Alfentanil: A study observed a reduction in clearance and distribution volume as well as prolongation of t½ of alfentanil following concomitant treatment with fluconazole. A possible mechanism of action is fluconazole’s inhibition of CYP3A4. Dosage adjustment of alfentanil may be necessary.

    Amiodarone: Concomitant administration of fluconazole with amiodarone may increase QT prolongation. Caution must be exercised if the concomitant use of fluconazole and amiodarone is necessary, notably with high-dose fluconazole (800 mg).

    Amitriptyline, nortriptyline: Fluconazole increases the effect of amitriptyline and nortriptyline. 5-Nortriptyline and/or S-amitriptyline may be measured at initiation of the combination therapy and after 1 week. Dosage of amitriptyline/nortriptyline should be adjusted, if necessary.

    Amphotericin B: Concurrent administration of fluconazole and amphotericin B in infected normal and immunosuppressed mice showed the following results: a small additive antifungal effect in systemic infection with Candida albicans, no interaction in intracranial infection with Cryptococcus neoformans, and antagonism of the two drugs in systemic infection with A. fumigatus. The clinical significance of results obtained in these studies is unknown.

    Astemizole: Concomitant administration of fluconazole with astemizole may decrease the clearance of astemizole. Resulting increased plasma concentrations of astemizole can lead to QT prolongation and rare occurrences of torsade de pointes. Coadministration of fluconazole and astemizole is contraindicated.

    Azithromycin: An open-label, randomized, three-way crossover study in 18 healthy subjects assessed the effect of a single 1200 mg oral dose of azithromycin on the pharmacokinetics of a single 800 mg oral dose of fluconazole as well as the effects of fluconazole on the pharmacokinetics of azithromycin. There was no significant pharmacokinetic interaction between fluconazole and azithromycin.

    Calcium channel blockers: Certain calcium channel antagonists (nifedipine, isradipine, amlodipine, verapamil, and felodipine) are metabolized by CYP3A4. Fluconazole has the potential to increase the systemic exposure of the calcium channel antagonists. Frequent monitoring for adverse events is recommended.

    Carbamazepine: Fluconazole inhibits the metabolism of carbamazepine and an increase in serum carbamazepine of 30% has been observed. There is a risk of developing carbamazepine toxicity. Dosage adjustment of carbamazepine may be necessary depending on concentration measurements/effect.

    Celecoxib: During concomitant treatment with fluconazole (200 mg daily) and celecoxib

    (200 mg), the celecoxib Cmax and AUC increased by 68% and 134%, respectively. Half of the celecoxib dose may be necessary when combined with fluconazole.

    Cisapride: There have been reports of cardiac events, including torsade de pointes, in patients to whom fluconazole and cisapride were coadministered. A controlled study found that concomitant fluconazole 200 mg once daily and cisapride 20 mg four times a day yielded a significant increase in cisapride plasma levels and prolongation of QTc interval. The combined use of fluconazole with cisapride is contraindicated. (See CONTRAINDICATIONS and CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Coumarin-type anticoagulants: Prothrombin time may be increased in patients receiving concomitant fluconazole and coumarin-type anticoagulants. In post-marketing experience, as with other azole antifungals, bleeding events (bruising, epistaxis, gastrointestinal bleeding, hematuria, and melena) have been reported in association with increases in prothrombin time in patients receiving fluconazole concurrently with warfarin. Careful monitoring of prothrombin time in patients receiving fluconazole and coumarin-type anticoagulants is recommended. Dose adjustment of warfarin may be necessary. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Cyclophosphamide: Combination therapy with cyclophosphamide and fluconazole results in an increase in serum bilirubin and serum creatinine. The combination may be used while taking increased consideration to the risk of increased serum bilirubin and serum creatinine.

    Cyclosporine: Fluconazole significantly increases cyclosporine levels in renal transplant patients with or without renal impairment. Careful monitoring of cyclosporine concentrations and serum creatinine is recommended in patients receiving fluconazole and cyclosporine. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.) This combination may be used by reducing the dosage of cyclosporine depending on cyclosporine concentration.

    Fentanyl: One fatal case of possible fentanyl-fluconazole interaction was reported. The author judged that the patient died from fentanyl intoxication. Furthermore, in a randomized crossover study with 12 healthy volunteers, it was shown that fluconazole delayed the elimination of fentanyl significantly. Elevated fentanyl concentration may lead to respiratory depression.

    Halofantrine: Fluconazole can increase halofantrine plasma concentration due to an inhibitory effect on CYP3A4.

    HMG-CoA reductase inhibitors: The risk of myopathy and rhabdomyolysis increases when fluconazole is coadministered with HMG-CoA reductase inhibitors metabolized through CYP3A4, such as atorvastatin and simvastatin, or through CYP2C9, such as fluvastatin. If concomitant therapy is necessary, the patient should be observed for symptoms of myopathy and rhabdomyolysis and creatinine kinase should be monitored. HMG-CoA reductase inhibitors should be discontinued if a marked increase in creatinine kinase is observed or myopathy/rhabdomyolysis is diagnosed or suspected.

    Hydrochlorothiazide: In a pharmacokinetic interaction study, coadministration of multiple-dose hydrochlorothiazide to healthy volunteers receiving fluconazole increased plasma concentrations of fluconazole by 40%. An effect of this magnitude should not necessitate a change in the fluconazole dose regimen in subjects receiving concomitant diuretics.

    Losartan: Fluconazole inhibits the metabolism of losartan to its active metabolite (E-31 74) which is responsible for most of the angiotensin Il-receptor antagonism which occurs during treatment with losartan. Patients should have their blood pressure monitored continuously.

    Methadone: Fluconazole may enhance the serum concentration of methadone. Dosage adjustment of methadone may be necessary.

    Non-steroidal anti-inflammatory drugs: The Cmax and AUC of flurbiprofen were increased by 23% and 81%, respectively, when coadministered with fluconazole compared to administration of flurbiprofen alone. Similarly, the Cmax and AUC of the pharmacologically active isomer [S-(+)-ibuprofen] were increased by 15% and 82%, respectively, when fluconazole was coadministered with racemic ibuprofen (400 mg) compared to administration of racemic ibuprofen alone.

    Although not specifically studied, fluconazole has the potential to increase the systemic exposure of other non-steroidal anti-inflammatory drugs (NSAIDs) that are metabolized by CYP2C9 (e.g., naproxen, lornoxicam, meloxicam, diclofenac). Frequent monitoring for adverse events and toxicity related to NSAIDs is recommended. Adjustment of dosage of NSAIDs may be needed.

    Olaparib: Moderate inhibitors of CYP3A4 such as fluconazole increase olaparib plasma concentrations; concomitant use is not recommended. If the combination cannot be avoided, reduce the dose of olaparib as instructed in the LYNPARZA® (Olaparib) Prescribing Information.

    Oral contraceptives: Two pharmacokinetic studies with a combined oral contraceptive have been performed using multiple doses of fluconazole. There were no relevant effects on hormone level in the 50 mg fluconazole study, while at 200 mg daily, the AUCs of ethinyl estradiol and levonorgestrel were increased 40% and 24%, respectively. Thus, multiple-dose use of fluconazole at these doses is unlikely to have an effect on the efficacy of the combined oral contraceptive.

    Oral hypoglycemics: Clinically significant hypoglycemia may be precipitated by the use of fluconazole with oral hypoglycemic agents; one fatality has been reported from hypoglycemia in association with combined fluconazole and glyburide use. Fluconazole reduces the metabolism of tolbutamide, glyburide, and glipizide and increases the plasma concentration of these agents. When fluconazole is used concomitantly with these or other sulfonylurea oral hypoglycemic agents, blood glucose concentrations should be carefully monitored and the dose of the sulfonylurea should be adjusted as necessary. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Phenytoin: Fluconazole increases the plasma concentrations of phenytoin. Careful monitoring of phenytoin concentrations in patients receiving fluconazole and phenytoin is recommended. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Pimozide: Although not studied in vitro or in vivo, concomitant administration of fluconazole with pimozide may result in inhibition of pimozide metabolism. Increased pimozide plasma concentrations can lead to QT prolongation and rare occurrences of torsade de pointes. Coadministration of fluconazole and pimozide is contraindicated.

    Prednisone: There was a case report that a liver-transplanted patient treated with prednisone developed acute adrenal cortex insufficiency when a 3 month therapy with fluconazole was discontinued. The discontinuation of fluconazole presumably caused an enhanced CYP3A4 activity which led to increased metabolism of prednisone. Patients on long-term treatment with fluconazole and prednisone should be carefully monitored for adrenal cortex insufficiency when fluconazole is discontinued.

    Quinidine: Although not studied in vitro or in vivo, concomitant administration of fluconazole with quinidine may result in inhibition of quinidine metabolism. Use of quinidine has been associated with QT prolongation and rare occurrences of torsade de pointes. Coadministration of fluconazole and quinidine is contraindicated. (See CONTRAINDICATIONS.)

    Rifabutin: There have been reports that an interaction exists when fluconazole is administered concomitantly with rifabutin, leading to increased serum levels of rifabutin up to 80%. There have been reports of uveitis in patients to whom fluconazole and rifabutin were coadministered. Patients receiving rifabutin and fluconazole concomitantly should be carefully monitored. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Rifampin: Rifampin enhances the metabolism of concurrently administered fluconazole. Depending on clinical circumstances, consideration should be given to increasing the dose of fluconazole when it is administered with rifampin. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Saquinavir: Fluconazole increases the AUC of saquinavir by approximately 50%, Cmax by approximately 55%, and decreases the clearance of saquinavir by approximately 50% due to inhibition of saquinavir’s hepatic metabolism by CYP3A4 and inhibition of P-glycoprotein. Dosage adjustment of saquinavir may be necessary.

    Short-acting benzodiazepines: Following oral administration of midazolam, fluconazole resulted in substantial increases in midazolam concentrations and psychomotor effects. This effect on midazolam appears to be more pronounced following oral administration of fluconazole than with fluconazole administered intravenously. If short-acting benzodiazepines, which are metabolized by the cytochrome P450 system, are concomitantly administered with fluconazole, consideration should be given to decreasing the benzodiazepine dosage, and the patients should be appropriately monitored. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Sirolimus: Fluconazole increases plasma concentrations of sirolimus presumably by inhibiting the metabolism of sirolimus via CYP3A4 and P-glycoprotein. This combination may be used with a dosage adjustment of sirolimus depending on the effect/concentration measurements.

    Tacrolimus: Fluconazole may increase the serum concentrations of orally administered tacrolimus up to 5 times due to inhibition of tacrolimus metabolism through CYP3A4 in the intestines. No significant pharmacokinetic changes have been observed when tacrolimus is given intravenously. Increased tacrolimus levels have been associated with nephrotoxicity. Dosage of orally administered tacrolimus should be decreased depending on tacrolimus concentration. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Terfenadine: Because of the occurrence of serious cardiac dysrhythmias secondary to prolongation of the QTc interval in patients receiving azole antifungals in conjunction with terfenadine, interaction studies have been performed. One study at a 200 mg daily dose of fluconazole failed to demonstrate a prolongation in QTc interval. Another study at a 400 mg and 800 mg daily dose of fluconazole demonstrated that fluconazole taken in doses of 400 mg/day or greater significantly increases plasma levels of terfenadine when taken concomitantly. The combined use of fluconazole at doses of 400 mg or greater with terfenadine is contraindicated. (See CONTRAINDICATIONS and CLINICAL PHARMACOLOGY: Drug Interaction Studies.) The coadministration of fluconazole at doses lower than 400 mg/day with terfenadine should be carefully monitored.

    Theophylline: fluconazole increases the serum concentrations of theophylline. Careful monitoring of serum theophylline concentrations in patients receiving fluconazole and theophylline is recommended. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Tofacitinib: Systemic exposure to tofacitinib is increased when tofacitinib is coadministered with fluconazole. Reduce the dose of tofacitinib when given concomitantly with fluconazole (i.e., from 5 mg twice daily to 5 mg once daily as instructed in the XELJANZ® [tofacitinib] label). (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Triazolam: Fluconazole increases the AUC of triazolam (single dose) by approximately 50%, Cmax by 20% to 32%, and increases t½ by 25% to 50 % due to the inhibition of metabolism of triazolam. Dosage adjustments of triazolam may be necessary.

    Vinca alkaloids: Although not studied, fluconazole may increase the plasma levels of the vinca alkaloids (e.g., vincristine and vinblastine) and lead to neurotoxicity, which is possibly due to an inhibitory effect on CYP3A4.

    Vitamin A: Based on a case report in one patient receiving combination therapy with all-trans‑retinoid acid (an acid form of vitamin A) and fluconazole, central nervous system (CNS) related undesirable effects have developed in the form of pseudotumor cerebri, which disappeared after discontinuation of fluconazole treatment. This combination may be used but the incidence of CNS related undesirable effects should be borne in mind.

    Voriconazole: Avoid concomitant administration of voriconazole and fluconazole. Monitoring for adverse events and toxicity related to voriconazole is recommended; especially, if voriconazole is started within 24 h after the last dose of fluconazole. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

    Zidovudine: Fluconazole increases the Cmax and AUC of zidovudine by 84% and 74%, respectively, due to an approximately 45% decrease in oral zidovudine clearance. The half-life of zidovudine was likewise prolonged by approximately 128% following combination therapy with fluconazole. Patients receiving this combination should be monitored for the development of zidovudine-related adverse reactions. Dosage reduction of zidovudine may be considered.

    Physicians should be aware that interaction studies with medications other than those listed in the CLINICAL PHARMACOLOGY section have not been conducted, but such interactions may occur.

    Carcinogenesis, Mutagenesis, and Impairment of Fertility

    Fluconazole showed no evidence of carcinogenic potential in mice and rats treated orally for 24 months at doses of 2.5 mg/kg/day, 5 mg/kg/day or 10 mg/kg/day (approximately 2 to 7 times the recommended human dose). Male rats treated with 5 mg/kg/day and 10 mg/kg/day had an increased incidence of hepatocellular adenomas.

    Fluconazole, with or without metabolic activation, was negative in tests for mutagenicity in four strains of S. typhimurium, and in the mouse lymphoma L5178Y system. Cytogenetic studies in vivo (murine bone marrow cells, following oral administration of fluconazole) and in vitro (human lymphocytes exposed to fluconazole at 1000 mcg/mL) showed no evidence of chromosomal mutations.

    Fluconazole did not affect the fertility of male or female rats treated orally with daily doses of 5 mg/kg, 10 mg/kg or 20 mg/kg or with parenteral doses of 5 mg/kg, 25 mg/kg or 75 mg/kg, although the onset of parturition was slightly delayed at 20 mg/kg PO. In an intravenous perinatal study in rats at 5 mg/kg, 20 mg/kg and 40 mg/kg, dystocia and prolongation of parturition were observed in a few dams at 20 mg/kg (approximately 5 to 15 times the recommended human dose) and 40 mg/kg, but not at 5 mg/kg. The disturbances in parturition were reflected by a slight increase in the number of still born pups and decrease of neonatal survival at these dose levels. The effects on parturition in rats are consistent with the species specific estrogen-lowering property produced by high doses of fluconazole. Such a hormone change has not been observed in women treated with fluconazole (See CLINICAL PHARMACOLOGY).

    Pregnancy

    Teratogenic Effects: Potential for Fetal Harm: Use in pregnancy should be avoided except in patients with severe or potentially life-threatening fungal infections in whom fluconazole may be used if the anticipated benefit outweighs the possible risk to the fetus. A few published case reports describe a pattern of distinct congenital anomalies in infants exposed in utero to high dose maternal fluconazole (400 to 800 mg/day) during most or all of the first trimester. These reported anomalies are similar to those seen in animal studies. Effective contraceptive measures should be considered in women of child-bearing potential who are being treated with fluconazole 400 to 800 mg/day and should continue throughout the treatment period and for approximately 1 week (5 to 6 half-lives) after the final dose. If fluconazole is used during pregnancy, or if the patient becomes pregnant while taking the drug, the patient should be informed of the potential hazard to the fetus. Spontaneous abortions and congenital abnormalities have been suggested as potential risks associated with 150 mg of fluconazole as a single or repeated dose in the first trimester of pregnancy based on retrospective epidemiological studies. There are no adequate and well-controlled studies of fluconazole in pregnant women (See WARNINGS: Potential for Fetal Harm).

    Human Data: Case reports describe a distinctive and rare pattern of birth defects among infants whose mothers received high-dose (400 to 800 mg/day) fluconazole during most or all of the first trimester of pregnancy. The features seen in these infants include brachycephaly, abnormal facies, abnormal calvarial development, cleft palate, femoral bowing, thin ribs and long bones, arthrogryposis, and congenital heart disease. These effects are similar to those seen in animal studies.

    Epidemiological studies suggest a potential risk of spontaneous abortion and congenital abnormalities in infants whose mothers were treated with 150 mg of fluconazole as a single or repeated dose in the first trimester, but these epidemiological studies have limitations and these findings have not been confirmed in controlled clinical trials.

    Animal Data: Fluconazole was administered orally to pregnant rabbits during organogenesis in two studies at doses of 5 mg/kg, 10 mg/kg, and 20 mg/kg and at 5 mg/kg, 25 mg/kg, and 75 mg/kg, respectively. Maternal weight gain was impaired at all dose levels (approximately 0.25 to 4 times the 400 mg clinical dose based on body surface area [BSA] comparison), and abortions occurred at 75 mg/kg (approximately 4 times the 400 mg clinical dose based on BSA); no adverse fetal effects were observed.

    In several studies in which pregnant rats received fluconazole orally during organogenesis, maternal weight gain was impaired and placental weights were increased at 25 mg/kg. There were no fetal effects at 5 mg/kg or 10 mg/kg; increases in fetal anatomical variants (supernumerary ribs, renal pelvis dilation) and delays in ossification were observed at 25 mg/kg and 50 mg/kg and higher doses. At doses ranging from 80 mg/kg to 320 mg/kg (approximately 2 to 8 times the 400 mg clinical dose based on BSA), embryolethality in rats was increased and fetal abnormalities included wavy ribs, cleft palate, and abnormal craniofacial ossification. These effects are consistent with the inhibition of estrogen synthesis in rats and may be a result of known effects of lowered estrogen on pregnancy, organogenesis, and parturition.

    Nursing Mothers

    Fluconazole was present in low levels in breast milk following administration of a single 150 mg dose, based on data from a study in 10 breastfeeding women who temporarily or permanently discontinued breastfeeding 5 days to 19 months postpartum. The estimated daily infant dose of fluconazole from breast milk (assuming mean milk consumption of 150 mL/kg/day) based on the mean peak milk concentration (2.61 mcg/mL [range: 1.57 to 3.65 mcg/mL] at 5.2 hours post-dose) was 0.39 mg/kg/day, which is approximately 13% of the recommended pediatric dose for oropharyngeal candidiasis. (Labeled pediatric dose is 6 mg/kg/day on the first day followed by 3 mg/kg/day; estimated infant dose is 13% of 3 mg/kg/day maintenance dose). There are no data on fluconazole levels in milk after repeated use or after high-dose fluconazole. A published survey of 96 breastfeeding women who were treated with fluconazole 150 mg every other day (average of 7.3 capsules [range 1 to 29 capsules]) for lactation-associated candida of the breasts reported no serious adverse reactions in infants. Caution should be exercised when fluconazole is administered to a nursing woman.

    Pediatric Use

    An open-label, randomized, controlled trial has shown fluconazole to be effective in the treatment of oropharyngeal candidiasis in children 6 months to 13 years of age (See CLINICAL STUDIES).

    The use of fluconazole in children with cryptococcal meningitis, Candida esophagitis, or systemic Candida infections is supported by the efficacy shown for these indications in adults and by the results from several small noncomparative pediatric clinical studies. In addition, pharmacokinetic studies in children (See CLINICAL PHARMACOLOGY) have established a dose proportionality between children and adults (See DOSAGE AND ADMINISTRATION).

    In a noncomparative study of children with serious systemic fungal infections, most of which were candidemia, the effectiveness of fluconazole was similar to that reported for the treatment of candidemia in adults. Of 17 subjects with culture-confirmed candidemia, 11 of 14 (79%) with baseline symptoms (3 were asymptomatic) had a clinical cure; 13/15 (87%) of evaluable patients had a mycologic cure at the end of treatment but two of these patients relapsed at 10 and 18 days, respectively, following cessation of therapy.

    The efficacy of fluconazole for the suppression of cryptococcal meningitis was successful in 4 of 5 children treated in a compassionate-use study of fluconazole for the treatment of life-threatening or serious mycosis. There is no information regarding the efficacy of fluconazole for primary treatment of cryptococcal meningitis in children.

    The safety profile of fluconazole in children has been studied in 577 children ages 1 day to 17 years who received doses ranging from 1 to 15 mg/kg/day for 1 to 1,616 days (See ADVERSE REACTIONS).

    Efficacy of fluconazole has not been established in infants less than 6 months of age (See CLINICAL PHARMACOLOGY). A small number of patients (29) ranging in age from 1 day to 6 months have been treated safely with fluconazole.

    Geriatric Use

    In non-AIDS patients, side effects possibly related to fluconazole treatment were reported in fewer patients aged 65 and older (9%, n=339) than for younger patients (14%, n=2240). However, there was no consistent difference between the older and younger patients with respect to individual side effects. Of the most frequently reported (>1%) side effects, rash, vomiting and diarrhea occurred in greater proportions of older patients. Similar proportions of older patients (2.4%) and younger patients (1.5%) discontinued fluconazole therapy because of side effects. In post-marketing experience, spontaneous reports of anemia and acute renal failure were more frequent among patients 65 years of age or older than in those between 12 and 65 years of age. Because of the voluntary nature of the reports and the natural increase in the incidence of anemia and renal failure in the elderly, it is however not possible to establish a casual relationship to drug exposure.

    Controlled clinical trials of fluconazole did not include sufficient numbers of patients aged 65 and older to evaluate whether they respond differently from younger patients in each indication. Other reported clinical experience has not identified differences in responses between the elderly and younger patients.

    Fluconazole is primarily cleared by renal excretion as unchanged drug. Because elderly patients are more likely to have decreased renal function, care should be taken to adjust dose based on creatinine clearance. It may be useful to monitor renal function (See CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION).

  • ADVERSE REACTIONS

    Fluconazole is generally well tolerated.

    In some patients, particularly those with serious underlying diseases such as AIDS and cancer, changes in renal and hematological function test results and hepatic abnormalities have been observed during treatment with fluconazole and comparative agents, but the clinical significance and relationship to treatment is uncertain.

    In Patients Receiving a Single Dose for Vaginal Candidiasis

    During comparative clinical studies conducted in the United States, 448 patients with vaginal candidiasis were treated with fluconazole, 150 mg single dose. The overall incidence of side effects possibly related to fluconazole was 26%. In 422 patients receiving active comparative agents, the incidence was 16%. The most common treatment-related adverse events reported in the patients who received 150 mg single dose fluconazole for vaginitis were headache (13%), nausea (7%), and abdominal pain (6%). Other side effects reported with an incidence equal to or greater than 1% included diarrhea (3%), dyspepsia (1%), dizziness (1%), and taste perversion (1%). Most of the reported side effects were mild to moderate in severity. Rarely, angioedema and anaphylactic reaction have been reported in marketing experience.

    In Patients Receiving Multiple Doses for Other Infections

    Sixteen percent of over 4000 patients treated with fluconazole in clinical trials of 7 days or more experienced adverse events. Treatment was discontinued in 1.5% of patients due to adverse clinical events and in 1.3% of patients due to laboratory test abnormalities.

    Clinical adverse events were reported more frequently in HIV infected patients (21%) than in non-HIV infected patients (13%); however, the patterns in HIV infected and non-HIV infected patients were similar. The proportions of patients discontinuing therapy due to clinical adverse events were similar in the two groups (1.5%).

    The following treatment-related clinical adverse events occurred at an incidence of 1% or greater in 4048 patients receiving fluconazole for 7 or more days in clinical trials: nausea 3.7%, headache 1.9%, skin rash 1.8%, vomiting 1.7%, abdominal pain 1.7%, and diarrhea 1.5%.

    Hepato-biliary: In combined clinical trials and marketing experience, there have been rare cases of serious hepatic reactions during treatment with fluconazole (See WARNINGS). The spectrum of these hepatic reactions has ranged from mild transient elevations in transaminases to clinical hepatitis, cholestasis and fulminant hepatic failure, including fatalities. Instances of fatal hepatic reactions were noted to occur primarily in patients with serious underlying medical conditions (predominantly AIDS or malignancy) and often while taking multiple concomitant medications. Transient hepatic reactions, including hepatitis and jaundice, have occurred among patients with no other identifiable risk factors. In each of these cases, liver function returned to baseline on discontinuation of fluconazole.

    In two comparative trials evaluating the efficacy of fluconazole for the suppression of relapse of cryptococcal meningitis, a statistically significant increase was observed in median AST (SGOT) levels from a baseline value of 30 IU/L to 41 IU/L in one trial and 34 IU/L to 66 IU/L in the other. The overall rate of serum transaminase elevations of more than 8 times the upper limit of normal was approximately 1% in fluconazole-treated patients in clinical trials. These elevations occurred in patients with severe underlying disease, predominantly AIDS or malignancies, most of whom were receiving multiple concomitant medications, including many known to be hepatotoxic. The incidence of abnormally elevated serum transaminases was greater in patients taking fluconazole concomitantly with one or more of the following medications: rifampin, phenytoin, isoniazid, valproic acid, or oral sulfonylurea hypoglycemic agents.

    Post-Marketing Experience

    In addition, the following adverse events have occurred during post-marketing experience.

    Immunologic: In rare cases, anaphylaxis (including angioedema, face edema and pruritus) has been reported.

    Body as a Whole: Asthenia, fatigue, fever, malaise.

    Cardiovascular: QT prolongation, torsade de pointes (See PRECAUTIONS).

    Central Nervous System: Seizures, dizziness.

    Hematopoietic and Lymphatic: Leukopenia, including neutropenia and agranulocytosis, thrombocytopenia.

    Metabolic: Hypercholesterolemia, hypertriglyceridemia, hypokalemia.

    Gastrointestinal: Cholestasis, dry mouth, hepatocellular damage, dyspepsia, vomiting.

    Other Senses: Taste perversion.

    Musculoskeletal System: myalgia.

    Nervous System: Insomnia, paresthesia, somnolence, tremor, vertigo.

    Skin and Appendages: Acute generalized exanthematous pustulosis, drug eruption including fixed drug eruption, increased sweating, exfoliative skin disorders including Stevens-Johnson syndrome and toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms (DRESS) (See WARNINGS), alopecia.

    Adverse Reactions in Children

    The pattern and incidence of adverse events and laboratory abnormalities recorded during pediatric clinical trials are comparable to those seen in adults.

    In Phase II/III clinical trials conducted in the United States and in Europe, 577 pediatric patients, ages 1 day to 17 years were treated with fluconazole at doses up to 15 mg/kg/day for up to 1,616 days. Thirteen percent of children experienced treatment-related adverse events. The most commonly reported events were vomiting (5%), abdominal pain (3%), nausea (2%), and diarrhea (2%). Treatment was discontinued in 2.3% of patients due to adverse clinical events and in 1.4% of patients due to laboratory test abnormalities. The majority of treatment-related laboratory abnormalities were elevations of transaminases or alkaline phosphatase.

    Percentage of Patients With Treatment-Related Side Effects

    Fluconazole

    Comparative Agents

    (N=577)

    (N=451)

    With any side effect

    13.0

    9.3

    Vomiting

    5.4

    5.1

    Abdominal pain

    2.8

    1.6

    Nausea

    2.3

    1.6

    Diarrhea

    2.1

    2.2

  • OVERDOSAGE

    There have been reports of overdose with fluconazole accompanied by hallucination and paranoid behavior.

    In the event of overdose, symptomatic treatment (with supportive measures and gastric lavage if clinically indicated) should be instituted.

    Fluconazole is largely excreted in urine. A three-hour hemodialysis session decreases plasma levels by approximately 50%.

    In mice and rats receiving very high doses of fluconazole, clinical effects in both species included decreased motility and respiration, ptosis, lacrimation, salivation, urinary incontinence, loss of righting reflex and cyanosis; death was sometimes preceded by clonic convulsions.

  • DOSAGE AND ADMINISTRATION

    Dosage and Administration in Adults

    Single Dose: Vaginal candidiasis: The recommended dosage of fluconazole for vaginal candidiasis is 150 mg as a single oral dose.

    Multiple Dose: SINCE ORAL ABSORPTION IS RAPID AND ALMOST COMPLETE, THE DAILY DOSE OF FLUCONAZOLE IS THE SAME FOR ORAL (TABLETS AND SUSPENSION) AND INTRAVENOUS ADMINISTRATION. In general, a loading dose of twice the daily dose is recommended on the first day of therapy to result in plasma concentrations close to steady-state by the second day of therapy.

    The daily dose of fluconazole for the treatment of infections other than vaginal candidiasis should be based on the infecting organism and the patient’s response to therapy. Treatment should be continued until clinical parameters or laboratory tests indicate that active fungal infection has subsided. An inadequate period of treatment may lead to recurrence of active infection. Patients with AIDS and cryptococcal meningitis or recurrent oropharyngeal candidiasis usually require maintenance therapy to prevent relapse.

    Oropharyngeal candidiasis: The recommended dosage of fluconazole for oropharyngeal candidiasis is 200 mg on the first day, followed by 100 mg once daily. Clinical evidence of oropharyngeal candidiasis generally resolves within several days, but treatment should be continued for at least 2 weeks to decrease the likelihood of relapse.

    Esophageal candidiasis: The recommended dosage of fluconazole for esophageal candidiasis is 200 mg on the first day, followed by 100 mg once daily. Doses up to 400 mg/day may be used, based on medical judgment of the patient’s response to therapy. Patients with esophageal candidiasis should be treated for a minimum of three weeks and for at least two weeks following resolution of symptoms.

    Systemic Candida infections: For systemic Candida infections including candidemia, disseminated candidiasis, and pneumonia, optimal therapeutic dosage and duration of therapy have not been established. In open, noncomparative studies of small numbers of patients, doses of up to 400 mg daily have been used.

    Urinary tract infections and peritonitis: For the treatment of Candida urinary tract infections and peritonitis, daily doses of 50 to 200 mg have been used in open, noncomparative studies of small numbers of patients.

    Cryptococcal meningitis: The recommended dosage for treatment of acute cryptococcal meningitis is 400 mg on the first day, followed by 200 mg once daily. A dosage of 400 mg once daily may be used, based on medical judgment of the patient’s response to therapy. The recommended duration of treatment for initial therapy of cryptococcal meningitis is 10 to 12 weeks after the cerebrospinal fluid becomes culture negative. The recommended dosage of fluconazole for suppression of relapse of cryptococcal meningitis in patients with AIDS is 200 mg once daily.

    Prophylaxis in patients undergoing bone marrow transplantation: The recommended fluconazole daily dosage for the prevention of candidiasis in patients undergoing bone marrow transplantation is 400 mg, once daily. Patients who are anticipated to have severe granulocytopenia (less than 500 neutrophils cells/mm3) should start fluconazole prophylaxis several days before the anticipated onset of neutropenia, and continue for 7 days after the neutrophil count rises above 1000 cells/mm3.

    Dosage and Administration in Children

    The following dose equivalency scheme should generally provide equivalent exposure in pediatric and adult patients:

    Pediatric Patients

    Adults

    3 mg/kg

    100 mg

    6 mg/kg

    200 mg

    12 mg/kg

    400 mg

    • 1. Some older children may have clearances similar to that of adults. Absolute doses exceeding 600 mg/day are not recommended.

    Experience with fluconazole in neonates is limited to pharmacokinetic studies in premature newborns (See CLINICAL PHARMACOLOGY). Based on the prolonged half-life seen in premature newborns (gestational age 26 to 29 weeks), these children, in the first two weeks of life, should receive the same dosage (mg/kg) as in older children, but administered every 72 hours. After the first two weeks, these children should be dosed once daily. No information regarding fluconazole pharmacokinetics in full-term newborns is available.

    Oropharyngeal candidiasis: The recommended dosage of fluconazole for oropharyngeal candidiasis in children is 6 mg/kg on the first day, followed by 3 mg/kg once daily. Treatment should be administered for at least 2 weeks to decrease the likelihood of relapse.

    Esophageal candidiasis: For the treatment of esophageal candidiasis, the recommended dosage of fluconazole in children is 6 mg/kg on the first day, followed by 3 mg/kg once daily. Doses up to 12 mg/kg/day may be used, based on medical judgment of the patient’s response to therapy. Patients with esophageal candidiasis should be treated for a minimum of three weeks and for at least 2 weeks following the resolution of symptoms.

    Systemic Candida infections: For the treatment of candidemia and disseminated Candida infections, daily doses of 6 to 12 mg/kg/day have been used in an open, noncomparative study of a small number of children.

    Cryptococcal meningitis: For the treatment of acute cryptococcal meningitis, the recommended dosage is 12 mg/kg on the first day, followed by 6 mg/kg once daily. A dosage of 12 mg/kg once daily may be used, based on medical judgment of the patient’s response to therapy. The recommended duration of treatment for initial therapy of cryptococcal meningitis is 10 to 12 weeks after the cerebrospinal fluid becomes culture negative. For suppression of relapse of cryptococcal meningitis in children with AIDS, the recommended dose of fluconazole is 6 mg/kg once daily.

    Dosage In Patients With Impaired Renal Function

    Fluconazole is cleared primarily by renal excretion as unchanged drug. There is no need to adjust single dose therapy for vaginal candidiasis because of impaired renal function. In patients with impaired renal function who will receive multiple doses of fluconazole, an initial loading dose of 50 to 400 mg should be given. After the loading dose, the daily dose (according to indication) should be based on the following table:

    Creatinine Clearance (mL/min)

    Recommended Dose (%)

    >50

    100

    ≤50 (no dialysis)

    50

    Hemodialysis

    100% after each hemodialysis

    Patients on hemodialysis should receive 100% of the recommended dose after each hemodialysis; on non-dialysis days, patients should receive a reduced dose according to their creatinine clearance.

    These are suggested dose adjustments based on pharmacokinetics following administration of multiple doses. Further adjustment may be needed depending upon clinical condition.

    When serum creatinine is the only measure of renal function available, the following formula (based on sex, weight, and age of the patient) should be used to estimate the creatinine clearance in adults:

    Males:

    Weight (kg) x (140-age)

    72 x serum creatinine (mg/100 mL)

    Females: 0.85 x above value

    Although the pharmacokinetics of fluconazole has not been studied in children with renal insufficiency, dosage reduction in children with renal insufficiency should parallel that recommended for adults. The following formula may be used to estimate creatinine clearance in children:

    K x

    linear length or height (cm)

    serum creatinine (mg/100 mL)

    (Where K=0.55 for children older than 1 year and 0.45 for infants.)

    Administration

    Fluconazole for Oral Suspension, USP is administered orally. Fluconazole can be taken with or without food.

    Directions for Mixing the Oral Suspension

    Prepare a suspension at time of dispensing as follows: tap bottle until all the powder flows freely. To reconstitute, add 24 mL of distilled water or Purified Water (USP) to fluconazole bottle and shake vigorously to suspend powder. Each bottle will deliver 35 mL of suspension. The concentrations of the reconstituted suspensions are as follows:

    Fluconazole Contentper Bottle

    Concentration ofReconstituted Suspension

    350 mg

    10 mg/mL

    1400 mg

    40 mg/mL

    Note: Shake oral suspension well before using. Before Reconstitution: Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] After Reconstitution: Store suspension at 5° to 25°C (41° to 77°F). Discard unused portion after 2 weeks. Protect from freezing.

  • HOW SUPPLIED

    Fluconazole for Oral Suspension, USP

    Fluconazole for Oral Suspension, USP is supplied as a (orange-flavored) white to almost white powder to provide 35 mL per bottle:

    NDC: 0054-0002-85: Bottle of 350 mg

    NDC: 0054-0003-85: Bottle of 1400 mg

    Each mL contains 10 mg or 40 mg of fluconazole after reconstitution as directed.

    Storage

    Before Reconstitution: Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] After Reconstitution: Store suspension at 5° to 25°C (41° to 77°F). Discard unused portion after 2 weeks. Protect from freezing.

    Distr. by: West-Ward

    Pharmaceuticals Corp.

    Eatontown, NJ 07724

    10001541/14

    Revised February 2019

  • PATIENT INFORMATION

    Fluconazole for Oral Suspension, USP
    (floo kon’ a zole)

    Rx Only

    This leaflet contains important information about fluconazole. It is not meant to take the place of your doctor's instructions. Read this information carefully before you take fluconazole. Ask your doctor or pharmacist if you do not understand any of this information or if you want to know more about fluconazole.

    What Is Fluconazole?

    Fluconazole is a tablet you swallow to treat vaginal yeast infections caused by a yeast called Candida. Fluconazole helps stop too much yeast from growing in the vagina so the yeast infection goes away.

    Fluconazole is different from other treatments for vaginal yeast infections because it is a tablet taken by mouth. Fluconazole is also used for other conditions. However, this leaflet is only about using fluconazole for vaginal yeast infections. For information about using fluconazole for other reasons, ask your doctor or pharmacist. See the section of this leaflet for information about vaginal yeast infections.

    What Is a Vaginal Yeast Infection?

    It is normal for a certain amount of yeast to be found in the vagina. Sometimes too much yeast starts to grow in the vagina and this can cause a yeast infection. Vaginal yeast infections are common. About three out of every four adult women will have at least one vaginal yeast infection during their life.

    Some medicines and medical conditions can increase your chance of getting a yeast infection. If you are pregnant, have diabetes, use birth control pills, or take antibiotics you may get yeast infections more often than other women. Personal hygiene and certain types of clothing may increase your chances of getting a yeast infection. Ask your doctor for tips on what you can do to help prevent vaginal yeast infections.

    If you get a vaginal yeast infection, you may have any of the following symptoms:

    What To Tell Your Doctor Before You Start Fluconazole?

    Do not take fluconazole if you take certain medicines. They can cause serious problems. Therefore, tell your doctor about all the medicines you take including:

    Since there are many brand names for these medicines, check with your doctor or pharmacist if you have any questions.

    Who Should Not Take Fluconazole?

    To avoid a possible serious reaction, do NOT take fluconazole if you are taking erythromycin, astemizole, pimozide, quinidine, and cisapride (Propulsid®) since it can cause changes in heartbeat in some people if taken with fluconazole.

    How Should I Take Fluconazole

    Take fluconazole by mouth with or without food. You can take fluconazole at any time of the day.

    Fluconazole keeps working for several days to treat the infection. Generally the symptoms start to go away after 24 hours. However, it may take several days for your symptoms to go away completely. If there is no change in your symptoms after a few days, call your doctor.

    What Should I Avoid while Taking Fluconazole?

    Some medicines can affect how well fluconazole works. Check with your doctor before starting any new medicines within seven days of taking fluconazole.

    What Are the Possible Side Effects of Fluconazole?

    Like all medicines, fluconazole may cause some side effects that are usually mild to moderate.

    The most common side effects of fluconazole are:

    Allergic reactions to fluconazole are rare, but they can be very serious if not treated right away by a doctor. If you cannot reach your doctor, go to the nearest hospital emergency room. Signs of an allergic reaction can include shortness of breath; coughing; wheezing; fever; chills; throbbing of the heart or ears; swelling of the eyelids, face, mouth, neck, or any other part of the body; or skin rash, hives, blisters or skin peeling.

    Tell your doctor or pharmacist if you experience skin rash, fever, swollen glands, increase in a type of white blood cell (eosinophilia), and inflammation of internal organs (liver, lungs, heart, kidneys, and large intestine) as they may be signs of a hypersensitivity reaction (Drug Reaction or rash with Eosinophilia and Systemic Symptoms (DRESS)).

    Fluconazole has been linked to rare cases of serious liver damage, including deaths, mostly in patients with serious medical problems. Call your doctor if your skin or eyes become yellow, your urine turns a darker color, your stools (bowel movements) are light-colored, or if you vomit or feel like vomiting or if you have severe skin itching.

    In patients with serious conditions such as AIDS or cancer, rare cases of severe rashes with skin peeling have been reported. Tell your doctor right away if you get a rash while taking fluconazole.

    Fluconazole may cause other less common side effects besides those listed here. If you develop any side effects that concern you, call your doctor. For a list of all side effects, ask your doctor or pharmacist.

    Cases of reversible adrenal insufficiency have been reported with fluconazole. Tell your doctor is you experience chronic, or long lasting fatigue, muscle weakness, loss of appetite, weight loss or abdominal pain.

    What to Do For an Overdose

    In case of an accidental overdose, call your doctor right away or go to the nearest emergency room.

    How to Store Fluconazole

    Keep fluconazole and all medicines out of the reach of children.

    General Advice about Prescription Medicines

    Medicines are sometimes prescribed for conditions that are mentioned in patient information leaflets. Do not use fluconazole for a condition for which it was not prescribed. Do not give fluconazole to other people, even if they have the same symptoms you have. It may harm them.

    This leaflet summarizes the most important information about fluconazole. If you would like more information, talk with your doctor. You can ask your pharmacist or doctor for information about fluconazole that is written for health professionals.

    This Patient Information has been approved by the U.S. Food and Drug Administration.

    Distr. by: West-Ward

    Pharmaceuticals Corp.

    Eatontown, NJ 07724

    10001541/14

    Revised February 2019

  • PACKAGE/LABEL PRINCIPAL DISPLAY PANEL

    fpl-bl-10mgperml-35ml-06.jpg
  • PACKAGE/LABEL PRINCIPAL DISPLAY PANEL

    fpl-bl-40mgperml-35ml-06.jpg
  • INGREDIENTS AND APPEARANCE
    FLUCONAZOLE 
    fluconazole powder, for suspension
    Product Information
    Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC: 0054-0002
    Route of AdministrationORAL
    Active Ingredient/Active Moiety
    Ingredient NameBasis of StrengthStrength
    FLUCONAZOLE (UNII: 8VZV102JFY) (FLUCONAZOLE - UNII:8VZV102JFY) FLUCONAZOLE10 mg  in 1 mL
    Inactive Ingredients
    Ingredient NameStrength
    ANHYDROUS CITRIC ACID (UNII: XF417D3PSL)  
    ORANGE (UNII: 5EVU04N5QU)  
    SILICON DIOXIDE (UNII: ETJ7Z6XBU4)  
    SODIUM BENZOATE (UNII: OJ245FE5EU)  
    SUCROSE (UNII: C151H8M554)  
    TITANIUM DIOXIDE (UNII: 15FIX9V2JP)  
    XANTHAN GUM (UNII: TTV12P4NEE)  
    SODIUM CITRATE, UNSPECIFIED FORM (UNII: 1Q73Q2JULR)  
    Packaging
    #Item CodePackage DescriptionMarketing Start DateMarketing End Date
    1NDC: 0054-0002-85350 mL in 1 BOTTLE, PLASTIC; Type 0: Not a Combination Product07/29/200405/31/2021
    Marketing Information
    Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
    ANDAANDA07624607/29/200405/31/2021
    FLUCONAZOLE 
    fluconazole powder, for suspension
    Product Information
    Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC: 0054-0003
    Route of AdministrationORAL
    Active Ingredient/Active Moiety
    Ingredient NameBasis of StrengthStrength
    FLUCONAZOLE (UNII: 8VZV102JFY) (FLUCONAZOLE - UNII:8VZV102JFY) FLUCONAZOLE40 mg  in 1 mL
    Inactive Ingredients
    Ingredient NameStrength
    ANHYDROUS CITRIC ACID (UNII: XF417D3PSL)  
    ORANGE (UNII: 5EVU04N5QU)  
    SILICON DIOXIDE (UNII: ETJ7Z6XBU4)  
    SODIUM BENZOATE (UNII: OJ245FE5EU)  
    SUCROSE (UNII: C151H8M554)  
    TITANIUM DIOXIDE (UNII: 15FIX9V2JP)  
    XANTHAN GUM (UNII: TTV12P4NEE)  
    SODIUM CITRATE, UNSPECIFIED FORM (UNII: 1Q73Q2JULR)  
    Packaging
    #Item CodePackage DescriptionMarketing Start DateMarketing End Date
    1NDC: 0054-0003-851400 mL in 1 BOTTLE, PLASTIC; Type 0: Not a Combination Product07/29/200405/31/2021
    Marketing Information
    Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
    ANDAANDA07624607/29/200405/31/2021
    Labeler - West-Ward Pharmaceuticals Corp. (080189610)
    Establishment
    NameAddressID/FEIBusiness Operations
    West-Ward Columbus Inc.058839929MANUFACTURE(0054-0002, 0054-0003)

  • © 2024 FDA.report
    This site is not affiliated with or endorsed by the FDA.