Aprepitant by is a Prescription medication manufactured, distributed, or labeled by Glenmark Pharmaceuticals Inc., USA, Glenmark Life Sciences Limited, Glenmark Pharmaceuticals Limited. Drug facts, warnings, and ingredients follow.
Aprepitant is a substance P/neurokinin 1 (NK1) receptor antagonist.
Aprepitant capsules are indicated
Limitations of Use: (1.3)
Recommended Dosage for Prevention of Chemotherapy Induced Nausea and Vomiting (CINV) (2.1)
Recommended Dosage for PONV (2.2)
Administration (2.4)
Aprepitant Capsules, USP: 40 mg; 80 mg; 125 mg (3)
Most common adverse reactions are (6.1):
Prevention of Chemotherapy Induced Nausea and Vomiting (CINV)
PONV
To report SUSPECTED ADVERSE REACTIONS, contact Glenmark Pharmaceuticals Inc., USA at 1 (888) 721-7115 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.
Revised: 1/2020
Aprepitant capsules, in combination with other antiemetic agents, are indicated in patients 12 years of age and older for the prevention of:
Adults and Pediatric Patients 12 Years of Age and Older
The recommended oral dosage of aprepitant capsules, dexamethasone, and a 5-HT3 antagonist in adults and pediatric patients 12 years of age and older who can swallow oral capsules for the prevention of nausea and vomiting associated with administration of HEC or MEC is shown in Table 1 or Table 2, respectively.
Population |
Day 1 |
Day 2 |
Day 3 |
Day 4 |
|
Aprepitant capsules* |
Adultsand Pediatric Patients 12 Years and Older |
125 mg orally |
80 mg orally |
80 mg orally |
none |
Dexamethasone |
Adults |
12 mg orally |
8 mg orally |
8 mg orally |
8 mg orally |
Pediatric Patients 12 Years and Older |
If a corticosteroid, such as dexamethasone, is co-administered, administer 50% of the recommended corticosteroid dose on Days 1 through 4 [see Clinical Studies (14.3)]. |
||||
5-HT3 antagonist |
Adults and Pediatric Patients 12 Years and Older |
See selected 5-HT3 antagonist prescribing information for the recommended dosage |
none |
none |
none |
* Administer aprepitant capsules 1 hour prior to chemotherapy treatment on Days 1, 2, and 3. If no chemotherapy is given on Days 2 and 3, administer aprepitant capsules in the morning.
† Administer dexamethasone 30 minutes prior to chemotherapy treatment on Day 1 and in the morning on Days 2 through 4. A 50% dosage reduction of dexamethasone is recommended to account for a drug interaction with aprepitant [see Clinical Pharmacology (12.3)].
Population |
Day 1 |
Day 2 |
Day 3 |
|
Aprepitant capsules* |
Adults and Pediatric Patients 12 Years and Older |
125 mg orally |
80 mg orally |
80 mg orally |
Dexamethasone |
Adults |
12 mg orally |
none |
none |
Pediatric Patients 12 Years and Older |
If a corticosteroid, such as dexamethasone, is co-administered, administer 50% of the recommended corticosteroid dose on Days 1 through 4 [see Clinical Studies (14.3)].† |
|||
5-HT3 antagonist |
Adults and Pediatric Patients 12 Years and Older |
See the selected 5-HT3 antagonist prescribing information for recommended dosage |
none |
none |
* Administer aprepitant capsules 1 hour prior to chemotherapy treatment on Days 1, 2, and 3. If no chemotherapy is given on Days 2 and 3, administer aprepitant capsules in the morning.
† Administer dexamethasone 30 minutes prior to chemotherapy treatment on Day 1. A 50% dosage reduction of dexamethasone is recommended to account for a drug interaction with aprepitant [see Clinical Pharmacology (12.3)].
Aprepitant Capsules, USP:
Aprepitant is contraindicated in patients:
Aprepitant is a substrate, a weak-to-moderate (dose-dependent) inhibitor, and an inducer of CYP3A4.
See Table 10 and Table 11 for a listing of potentially significant drug interactions [see Drug Interactions (7.1, 7.2)].
Coadministration of aprepitant with warfarin, a CYP2C9 substrate, may result in a clinically significant decrease in International Normalized Ratio (INR) of prothrombin time [see Clinical Pharmacology (12.3)]. Monitor the INR in patients on chronic warfarin therapy in the 2-week period, particularly at 7 to 10 days, following initiation of the 3-day regimen of aprepitant with each chemotherapy cycle, or following administration of a single 40 mg dose of aprepitant for the prevention of postoperative nausea and vomiting [see Drug Interactions (7.1)].
Upon coadministration with aprepitant, the efficacy of hormonal contraceptives may be reduced during administration of and for 28 days following the last dose of aprepitant [see Clinical Pharmacology (12.3)]. Advise patients to use effective alternative or back-up methods of contraception during treatment with aprepitant and for 1 month following the last dose of aprepitant [see Drug Interactions (7.1), Use in Specific Populations (8.3)].
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.
The overall safety of aprepitant was evaluated in approximately 6800 individuals.
Adverse Reactions in Adults in the Prevention of Nausea and Vomiting Associated with HEC and MEC
In 2 active-controlled, double-blind clinical trials in patients receiving highly emetogenic chemotherapy (HEC) (Studies 1 and 2), aprepitant in combination with ondansetron and dexamethasone (aprepitant regimen) was compared to ondansetron and dexamethasone alone (standard therapy) [see Clinical Studies (14.1)].
In 2 active-controlled clinical trials in patients receiving moderately emetogenic chemotherapy (MEC) (Studies 3 and 4), aprepitant in combination with ondansetron and dexamethasone (aprepitant regimen) was compared to ondansetron and dexamethasone alone (standard therapy) [see Clinical Studies (14.2)]. The most common adverse reaction reported in patients who received MEC in pooled Studies 3 and 4 was dyspepsia (6% versus 4%).
Across these 4 studies there were 1412 patients treated with the aprepitant regimen during Cycle 1 of chemotherapy and 1099 of these patients continued into the Multiple-Cycle extension for up to 6 cycles of chemotherapy. The most common adverse reactions reported in patients who received HEC and MEC in pooled Studies 1, 2, 3 and 4 are listed in Table 5.
Aprepitant, ondansetron, and dexamethasone†
(N=1412) | Ondansetron and dexamethasone‡
(N=1396) |
|
---|---|---|
fatigue |
13% |
12% |
diarrhea |
9% |
8% |
asthenia |
7% |
6% |
dyspepsia |
7% |
5% |
abdominal pain |
6% |
5% |
hiccups |
5% |
3% |
white blood cell count decreased |
4% |
3% |
dehydration |
3% |
2% |
alanine aminotransferase increased |
3% |
2% |
*Reported in ≥ 3% of patients treated with the aprepitant regimen and at a greater incidence than standard therapy.
†Aprepitant regimen
‡Standard therapy
In a pooled analysis of the HEC and MEC studies, less common adverse reactions reported in patients treated with the aprepitant regimen are listed in Table 6.
Infection and Infestations |
oral candidiasis, pharyngitis |
Blood and the Lymphatic System Disorders |
anemia, febrile neutropenia, neutropenia, thrombocytopenia |
Metabolism and Nutrition Disorders |
decreased appetite, hypokalemia |
Psychiatric Disorders |
anxiety |
Nervous System Disorders |
dizziness, dysgeusia, peripheral neuropathy |
Cardiac Disorders |
palpitations |
Vascular Disorders |
flushing, hot flush |
Respiratory, Thoracic and Mediastinal Disorders |
cough, dyspnea, oropharyngeal pain |
Gastrointestinal Disorders |
dry mouth, eructation, flatulence, gastritis, gastroesophageal reflux disease, nausea, vomiting |
Skin and Subcutaneous Tissue Disorders |
alopecia, hyperhidrosis, rash |
Musculoskeletal and Connective Tissue Disorders |
musculoskeletal pain |
General Disorders and Administration Site Condition |
edema peripheral, malaise |
Investigations |
aspartate aminotransferase increased, blood alkaline phosphatase increased, blood sodium decreased, blood urea increased, proteinuria, weight decreased |
*Reported in > 0.5% of patients treated with the aprepitant regimen, at a greater incidence than standard therapy and not previously described in Table 5.
In an additional active-controlled clinical study in 1169 patients receiving aprepitant and HEC, the adverse reactions were generally similar to that seen in the other HEC studies with aprepitant.
In another CINV study, Stevens-Johnson syndrome was reported as a serious adverse reaction in a patient receiving the aprepitant regimen with cancer chemotherapy.
Adverse reactions in the Multiple-Cycle extensions of HEC and MEC studies for up to 6 cycles of chemotherapy were generally similar to that observed in Cycle 1.
Adverse Reactions in Pediatric Patients 6 Months to 17 Years of Age in the Prevention of Nausea and Vomiting Associated with HEC or MEC
In a pooled analysis of 2 active-controlled clinical trials in pediatric patients aged 6 months to 17 years who received highly or moderately emetogenic cancer chemotherapy (Study 5 and a safety study, Study 6), aprepitant in combination with ondansetron with or without dexamethasone (aprepitant regimen) was compared to ondansetron with or without dexamethasone (control regimen).
There were 184 patients treated with the aprepitant regimen during Cycle 1 and 215 patients received open-label aprepitant for up to 9 additional cycles of chemotherapy.
In Cycle 1, the most common adverse reactions reported in pediatric patients treated with the aprepitant regimen in pooled Studies 5 and 6 are listed in Table 7.
Table 7: Most Common Adverse Reactions in Aprepitant -Treated Pediatric Patients in HEC and MEC Pooled Studies 5 and 6*
Aprepitant and ondansetron† (N=184) |
Ondansetron‡ (N=168) |
|
neutropenia |
13% |
11% |
headache |
9% |
5% |
diarrhea |
6% |
5% |
decreased appetite |
5% |
4% |
cough |
5% |
3% |
fatigue |
5% |
2% |
hemoglobin decreased |
5% |
4% |
dizziness |
5% |
1% |
hiccups |
4% |
1% |
*Reported in ≥3% of patients treated with the aprepitant regimen and at a greater incidence than control regimen.
† Aprepitant regimen
‡Control regimen
Forty-nine patients were treated with ifosfamide chemotherapy in each arm. Two of the patients treated with ifosfamide in the aprepitant arm developed behavioral changes (agitation = 1; abnormal behavior = 1), whereas no patient treated with ifosfamide in the control arm developed behavioral changes. Aprepitant has the potential for increasing ifosfamide-mediated neurotoxicity through induction of CYP3A4 [see Drug Interactions (7.1) and Clinical Pharmacology (12.3)].
Adverse Reactions in Adult Patients in the Prevention of PONV
In 2 active-controlled, double-blind clinical studies in patients receiving general anesthesia (Studies 7 and 8), 40 mg oral aprepitant was compared to 4 mg intravenous ondansetron [see Clinical Studies (14.4)].
There were 564 patients treated with aprepitant and 538 patients treated with ondansetron.
The most common adverse reactions reported in patients treated with aprepitant for PONV in pooled Studies 7 and 8 are listed in Table 8.
Aprepitant 40 mg
|
Ondansetron
|
|
constipation |
9% |
8% |
hypotension |
6% |
5% |
*Reported in ≥ 3% of patients treated with the aprepitant 40 mg and at a greater incidence than ondansetron.
In a pooled analysis of PONV studies, less common adverse reactions reported in patients treated with aprepitant are listed in Table 9.
Infections and Infestations |
postoperative infection |
Metabolism and Nutrition Disorders |
hypokalemia, hypovolemia |
Nervous System Disorders |
dizziness, hypoesthesia, syncope |
Cardiac Disorders |
bradycardia |
Vascular Disorders |
hematoma |
Respiratory, Thoracic and Mediastinal Disorders |
dyspnea, hypoxia, respiratory depression |
Gastrointestinal Disorders |
abdominal pain, dry mouth, dyspepsia |
Skin and Subcutaneous Tissue Disorders |
urticaria |
General Disorders and Administration Site Conditions |
hypothermia |
Investigations |
blood albumin decreased, bilirubin increased, blood glucose increased, blood potassium decreased |
Injury, Poisoning and Procedural Complications |
operative hemorrhage, wound dehiscence |
*Reported in > 0.5% of patients treated with aprepitant and at a greater incidence than ondansetron
In addition, two serious adverse reactions were reported in PONV clinical studies in patients taking a higher than recommended dose of aprepitant: one case of constipation, and one case of sub-ileus.
Other Studies
Angioedema and urticaria were reported as serious adverse reactions in a patient receiving aprepitant in a non-CINV/non-PONV study (aprepitant is only approved in the CINV and PONV populations).
The following adverse reactions have been identified during post-approval use of aprepitant. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Skin and subcutaneous tissue disorders: pruritus, rash, urticaria, Stevens-Johnson syndrome/toxic epidermal necrolysis.
Immune system disorders: hypersensitivity reactions including anaphylactic reactions [see Contraindications (4)].
Nervous system disorders: ifosfamide-induced neurotoxicity reported after aprepitant and ifosfamide coadministration.
Aprepitant is a substrate, a weak-to-moderate (dose-dependent) inhibitor, and an inducer of CYP3A4. Aprepitant is also an inducer of CYP2C9 [see Clinical Pharmacology (12.3)].
Aprepitant acts as a moderate inhibitor of CYP3A4 when administered as a 3-day regimen (125 mg/80 mg/80 mg) and can increase plasma concentrations of concomitant drugs that are substrates for CYP3A4. Aprepitant acts as a weak inhibitor when administered as a single 40 mg dose and has not been shown to alter the plasma concentrations of concomitant drugs that are primarily metabolized through CYP3A4. Some substrates of CYP3A4 are contraindicated with aprepitant [see Contraindications (4)]. Dosage adjustment of some CYP3A4 and CYP2C9 substrates may be warranted, as shown in Table 10.
CYP3A4 Substrates |
|
Pimozide |
|
Clinical Impact |
Increased pimozide exposure. |
Intervention |
Aprepitant is contraindicated [see Contraindications (4)]. |
Benzodiazepines |
|
Clinical Impact |
Increased exposure to midazolam or other benzodiazepines metabolized via CYP3A4 (alprazolam, triazolam) may increase the risk of adverse reactions [see Clinical Pharmacology (12.3)]. |
Intervention |
3-day aprepitant regimen
Single 40 mg dose of aprepitant
|
Dexamethasone |
|
Clinical Impact |
Increased dexamethasone exposure [see Clinical Pharmacology (12.3)]. |
Intervention |
3-day aprepitant regimen
Single 40 mg dose of aprepitant
|
Methylprednisolone |
|
Clinical Impact |
Increased methylprednisolone exposure [see Clinical Pharmacology (12.3)]. |
Intervention |
3-day aprepitant regimen
Single 40 mg dose of aprepitant
|
Chemotherapeutic agents that are metabolized by CYP3A4 |
|
Clinical Impact |
Increased exposure of the chemotherapeutic agent may increase the risk of adverse reactions [see Clinical Pharmacology (12.3)]. |
Intervention |
Vinblastine, vincristine, or ifosfamide or other chemotherapeutic agents
Etoposide, vinorelbine, paclitaxel, and docetaxel
|
Hormonal Contraceptives |
|
Clinical Impact |
Decreased hormonal exposure during administration of and for 28 days after administration of the last dose of aprepitant [see Warnings and Precautions (5.3), Use in Specific Populations (8.3), Clinical Pharmacology (12.3)]. |
Intervention |
Effective alternative or back-up methods of contraception (such as condoms and spermicides) should be used during treatment with aprepitant and for 1 month following the last dose of aprepitant. |
Examples |
birth control pills, skin patches, implants, and certain IUDs |
CYP2C9 Substrates |
|
Warfarin |
|
Clinical Impact |
Decreased warfarin exposure and decreased prothrombin time (INR) [see Warnings |
Intervention |
In patients on chronic warfarin therapy, monitor the prothrombin time (INR) in the 2-week period, particularly at 7 to 10 days, following initiation of the 3-day aprepitant regimen with each chemotherapy cycle, or following administration of a single 40 mg dose of aprepitant. |
Other |
|
5-HT3 Antagonists |
|
Clinical Impact |
No change in the exposure of the 5-HT3 antagonist [see Clinical Pharmacology (12.3)]. |
Intervention |
No dosage adjustment needed |
Examples |
ondansetron, granisetron, dolasetron |
Aprepitant is a CYP3A4 substrate [see Clinical Pharmacology (12.3)]. Co-administration of aprepitant with drugs that are inhibitors or inducers of CYP3A4 may result in increased or decreased plasma concentrations of aprepitant, respectively, as shown in Table 11.
Moderate to Strong CYP3A4 Inhibitors |
|
Clinical Impact |
Significantly increased exposure of aprepitant may increase the risk of adverse reactions associated with aprepitant [see Adverse Reactions (6.1) and Clinical Pharmacology (12.3)]. |
Intervention |
Avoid concomitant use of aprepitant |
Examples |
Strong inhibitors:
|
Strong CYP3A4 Inducers |
|
Clinical Impact |
Substantially decreased exposure of aprepitant in patients chronically taking a strong CYP3A4 inducer may decrease the efficacy of aprepitant [see Clinical Pharmacology (12.3)]. |
Intervention |
Avoid concomitant use of aprepitant |
Examples |
rifampin, carbamazepine, phenytoin |
Risk Summary
There are insufficient data on use of aprepitant in pregnant women to inform a drug associated risk. In animal reproduction studies, no adverse developmental effects were observed in rats or rabbits exposed during the period of organogenesis to systemic drug levels (AUC) approximately 1.5 times the adult human exposure at the 125 mg/80 mg/80 mg aprepitant regimen [see Data].
The estimated background risk of major birth defects and miscarriage for the indicated populations is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.
Data
Animal Data
In embryofetal development studies in rats and rabbits, aprepitant was administered during the period of organogenesis at oral doses up to 1000 mg/kg twice daily in rats and up to the maximum tolerated dose of 25 mg/kg/day in rabbits. No embryofetal lethality or malformations were observed at any dose level in either species. The exposures (AUC) in pregnant rats at 1000 mg/kg twice daily and in pregnant rabbits at 125 mg/kg/day were approximately 1.5 times the adult exposure at the 125 mg/80 mg/80 mg aprepitant regimen. Aprepitant crosses the placenta in rats and rabbits.
Risk Summary
Lactation studies have not been conducted to assess the presence of aprepitant in human milk, the effects on the breastfed infant, or the effects on milk production. Aprepitant is present in rat milk. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for aprepitant and any potential adverse effects on the breastfed infant from aprepitant or from the underlying maternal condition.
Contraception
Upon administration of aprepitant, the efficacy of hormonal contraceptives may be reduced. Advise females of reproductive potential using hormonal contraceptives to use an effective alternative or back-up non-hormonal contraceptive (such as condoms and spermicides) during treatment with aprepitant and for 1 month following the last dose [see Drug Interactions (7.1), Clinical Pharmacology (12.3)].
Prevention of Nausea and Vomiting Associated with HEC or MEC
The safety and effectiveness of aprepitant capsules in pediatric patients 12 years of age and older for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of HEC, including high-dose cisplatin, and MEC. Use of aprepitant in these age groups is supported by evidence from 95 pediatric patients in a randomized, double-blind, active comparator controlled clinical study (n = 95 patients aged 12 through 17 years). Aprepitant was studied in combination with ondansetron with or without dexamethasone (at the discretion of the physician) [see Clinical Studies (14.3)]. Adverse reactions were similar to those reported in adult patients [see Adverse Reactions (6.1)].
The safety and effectiveness of aprepitant for the prevention of nausea and vomiting associated with HEC or MEC have not been established in patients less than 6 months.
Prevention of Postoperative Nausea and Vomiting (PONV)
The safety and effectiveness of aprepitant have not been established for the prevention of postoperative nausea and vomiting in pediatric patients.
Juvenile Animal Study
A study was conducted in young rats to evaluate the effects of aprepitant on growth and on neurobehavioral and sexual development. Rats were treated at oral doses up to the maximum feasible dose of 1000 mg/kg twice daily (providing exposure in male rats lower than the exposure at the recommended pediatric human dose and exposure in female rats equivalent to the pediatric human exposure) from the early postnatal period (Postnatal Day 10) through Postnatal Day 58. Slight changes in the onset of sexual maturation were observed in female and male rats; however, there were no effects on mating, fertility, embryonic-fetal survival, or histomorphology of the reproductive organs. There were no effects in neurobehavioral tests of sensory function, motor function, and learning and memory.
Of the 544 adult cancer patients treated with aprepitant in CINV clinical studies, 31% were aged 65 and over, while 5% were aged 75 and over. Of the 1120 adult cancer patients treated with aprepitant in PONV clinical studies, 7% were aged 65 and over, while 2% were aged 75 and over. Other reported clinical experience with aprepitant has not identified differences in responses between elderly and younger patients. In general, use caution when dosing elderly patients as they have a greater frequency of decreased hepatic, renal or cardiac function and concomitant disease or other drug therapy [see Clinical Pharmacology (12.3)].
The pharmacokinetics of aprepitant in patients with severe renal impairment and those with end stage renal disease (ESRD) requiring hemodialysis were similar to those of healthy subjects with normal renal function. No dosage adjustment is necessary for patients with any degree of renal impairment or for patients with ESRD undergoing hemodialysis.
The pharmacokinetics of aprepitant in patients with mild and moderate hepatic impairment were similar to those of healthy subjects with normal hepatic function. No dosage adjustment is necessary for patients with mild to moderate hepatic impairment (Child-Pugh score 5 to 9). There are no clinical or pharmacokinetic data in patients with severe hepatic impairment (Child-Pugh score greater than 9). Therefore, additional monitoring for adverse reactions in these patients may be warranted when aprepitant is administered [see Clinical Pharmacology (12.3)].
No specific information is available on the treatment of overdosage.
Drowsiness and headache were reported in one patient who ingested 1440 mg of aprepitant (approximately 11 times the maximum recommended single dose).
In the event of overdose, aprepitant should be discontinued and general supportive treatment and monitoring should be provided. Because of the antiemetic activity of aprepitant, drug-induced emesis may not be effective in cases of aprepitant overdosage.
Aprepitant is not removed by hemodialysis.
Aprepitant Capsules USP contain the active ingredient aprepitant, USP. Aprepitant, USP is a substance P/neurokinin 1 (NK1) receptor antagonist, an antiemetic agent, chemically described as 5-[[(2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)-4-morpholinyl]methyl]-1,2-dihydro-3H-1,2,4-triazol-3-one.
Its empirical formula is C23H21F7N4O3, and its structural formula is:
Aprepitant, USP is a white to off-white powder, with a molecular weight of 534.43 g/mol. It is soluble in methanol and in acetone, sparingly soluble in ethanol, and practically insoluble in water.
Each capsule for oral administration contains either 40 mg, 80 mg, or 125 mg of aprepitant, USP and the following inactive ingredients: colloidal silicon dioxide, hydroxyethyl cellulose, microcrystalline cellulose, mannitol, poloxamer, povidone, sodium stearyl fumarate, vitamin E polyethylene glycol succinate, and purified water. The capsule shell excipients are gelatin, sodium lauryl sulphate and titanium dioxide. The 40-mg capsule shell also contains iron oxide yellow, and the 125 mg capsule also contains FD&C Red #3. Non-volatile solvents in the imprinting ink are shellac, iron oxide black and potassium hydroxide.
USP dissolution test pending.
Aprepitant is a selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptors. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting (CINV) and postoperative nausea and vomiting (PONV).
Aprepitant has been shown in animal models to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors. Animal and human studies show that aprepitant augments the antiemetic activity of the 5-HT3-receptor antagonist ondansetron and the corticosteroid dexamethasone and inhibits both the acute and delayed phases of cisplatin-induced emesis.
NK1 Receptor Occupancy
In two single-blind, multiple-dose, randomized, and placebo-controlled studies, healthy young men received oral aprepitant doses of 10 mg (N=2), 30 mg (N=3), 100 mg (N=3) or 300 mg (N=5) once daily (0.08, 0.24, 0.8, and 2.4 times the maximum recommended single dose, respectively) for 14 days with 2 or 3 subjects on placebo. Both plasma aprepitant concentration and NK1 receptor occupancy in the corpus striatum by positron emission tomography were evaluated, at predose and 24 hours after the last dose. At aprepitant plasma concentrations of approximately 10 ng/mL and 100 ng/mL, the NK1 receptor occupancies were approximately 50% and 90%, respectively. The oral aprepitant regimen produced mean trough plasma aprepitant concentrations greater than 500 ng/mL in adults, which would be expected to, based on the fitted curve with the Hill equation, result in greater than 95% brain NK1 receptor occupancy. However, the receptor occupancy has not been determined. In addition, the relationship between NK1 receptor occupancy and the clinical efficacy of aprepitant has not been established.
Cardiac Electrophysiology
In a randomized, double-blind, positive-controlled, thorough QTc study, a single 200-mg dose of fosaprepitant had no effect on the QTc interval. Maximum aprepitant concentrations after a single 200-mg dose of fosaprepitant were 4- and 9-fold higher than that achieved with oral aprepitant 125 mg and 40 mg, respectively. QT prolongation with the oral aprepitant dosing regimens is not expected.
Absorption
Following oral administration of a single 40 mg dose of aprepitant in the fasted state, mean area under the plasma concentration-time curve (AUC0-∞) was 7.8 mcghr/mL and mean peak plasma concentration (Cmax) was 0.7 mcg/mL, occurring at approximately 3 hours postdose (Tmax). The absolute bioavailability at the 40 mg dose has not been determined.
Following oral administration of a single 125 mg dose of aprepitant on Day 1 and 80 mg once daily on Days 2 and 3, the AUC0-24hr was approximately 19.6 mcghr/mL and 21.2 mcghr/mL on Day 1 and Day 3, respectively. The Cmax of 1.6 mcg/mL and 1.4 mcg/mL were reached in approximately 4 hours (Tmax) on Day 1 and Day 3, respectively. At the dose range of 80 to 125 mg, the mean absolute oral bioavailability of aprepitant is approximately 60 to 65%. Oral administration of the capsule with a standard high-fat breakfast had no clinically meaningful effect on the bioavailability of aprepitant.
The pharmacokinetics of aprepitant were non-linear across the clinical dose range. In healthy young adults, the increase in AUC0-∞ was 26% greater than dose proportional between 80 mg and 125 mg single doses administered in the fed state.
Distribution
Aprepitant is greater than 95% bound to plasma proteins. The mean apparent volume of distribution at steady state (Vdss) was approximately 70 L in humans.
Aprepitant crosses the blood brain barrier in humans [see Clinical Pharmacology (12.1)].
Elimination
Metabolism
Aprepitant undergoes extensive metabolism. In vitro studies using human liver microsomes indicate that aprepitant is metabolized primarily by CYP3A4 with minor metabolism by CYP1A2 and CYP2C19. Metabolism is largely via oxidation at the morpholine ring and its side chains. No metabolism by CYP2D6, CYP2C9, or CYP2E1 was detected. In healthy young adults, aprepitant accounts for approximately 24% of the radioactivity in plasma over 72 hours following a single oral 300 mg dose of [14C]-aprepitant (2.4 times the maximum recommended dose), indicating a substantial presence of metabolites in the plasma. Seven metabolites of aprepitant, which are only weakly active, have been identified in human plasma.
Excretion
Following administration of a single intravenous 100 mg dose of [14C]-aprepitant prodrug to healthy subjects, 57% of the radioactivity was recovered in urine and 45% in feces. A study was not conducted with radiolabeled capsule formulation. The results after oral administration may differ.
Aprepitant is eliminated primarily by metabolism; aprepitant is not renally excreted. The apparent plasma clearance of aprepitant ranged from approximately 62 to 90 mL/min. The apparent terminal half-life ranged from approximately 9 to 13 hours.
Specific Populations
Geriatric Patients
Following oral administration of a single 125 mg dose of aprepitant on Day 1 and 80 mg once daily on Days 2 through 5 (2 additional days of dosing compared to the recommended duration), the AUC0-24hr of aprepitant was 21% higher on Day 1 and 36% higher on Day 5 in elderly (65 years and older) relative to younger adults. The Cmax was 10% higher on Day 1 and 24% higher on Day 5 in elderly relative to younger adults. These differences are not considered clinically meaningful [see Use in Specific Populations (8.5)].
Pediatric Patients
As part of a 3-day regimen, dosing of aprepitant capsules (125 mg/80 mg/80 mg) in 18 pediatric patients (aged 12 through 17 years) achieved a mean AUC0-24hr of 17 mcghr/mL on Day 1 with mean peak plasma concentration (Cmax) at 1.3 mcg/mL occurring at approximately 4 hours. The mean concentrations at the end of Day 2 (N=8) and Day 3 (N=16) were both at 0.6 mcg/mL.
A population pharmacokinetic analysis of aprepitant in pediatric patients (aged 6 months through 17 years) suggests that sex and race have no clinically meaningful effect on the pharmacokinetics of aprepitant.
Male and Female Patients
Following oral administration of a single dose of aprepitant ranging from 40 mg to 375 mg (3 times the maximum aprepitant recommended dose), the AUC0-24hr and Cmax are 9% and 17% higher in females as compared with males. The half-life of aprepitant is approximately 25% lower in females as compared with males and Tmax occurs at approximately the same time. These differences are not considered clinically meaningful.
Racial or Ethnic Groups
Following oral administration of a single dose of aprepitant ranging from 40 mg to 375 mg (3 times the maximum aprepitant recommended dose), the AUC0-24hr and Cmax are approximately 27% and 19% higher in Hispanics as compared with Caucasians. The AUC0-24hr and Cmax were 74% and 47% higher in Asians as compared to Caucasians. There was no difference in AUC0-24hr or Cmax between Caucasians and Blacks. These differences are not considered clinically meaningful.
Patients with Renal Impairment
A single 240 mg dose of aprepitant (approximately 1.9 times the maximum aprepitant recommended dose) was administered to patients with severe renal impairment (creatinine clearance less than 30 mL/min/1.73 m2 as measured by 24-hour urinary creatinine clearance) and to patients with end stage renal disease (ESRD) requiring hemodialysis.
In patients with severe renal impairment, the AUC0-∞ of total aprepitant (unbound and protein bound) decreased by 21% and Cmax decreased by 32%, relative to healthy subjects (creatinine clearance greater than 80 mL/min estimated by Cockcroft-Gault method). In patients with ESRD undergoing hemodialysis, the AUC0-∞ of total aprepitant decreased by 42% and Cmax decreased by 32%. Due to modest decreases in protein binding of aprepitant in patients with renal disease, the AUC of pharmacologically active unbound drug was not significantly affected in patients with renal impairment compared with healthy subjects. Hemodialysis conducted 4 or 48 hours after dosing had no significant effect on the pharmacokinetics of aprepitant; less than 0.2% of the dose was recovered in the dialysate [see Use in Specific Populations (8.6)].
Patients with Hepatic Impairment
Following administration of a single 125 mg dose of aprepitant on Day 1 and 80 mg once daily on Days 2 and 3 to patients with mild hepatic impairment (Child-Pugh score 5 to 6), the AUC0-24hr of aprepitant was 11% lower on Day 1 and 36% lower on Day 3, as compared with healthy subjects given the same regimen. In patients with moderate hepatic impairment (Child-Pugh score 7 to 9), the AUC0-24hr of aprepitant was 10% higher on Day 1 and 18% higher on Day 3, as compared with healthy subjects given the same regimen. These differences in AUC0-24hr are not considered clinically meaningful. There are no clinical or pharmacokinetic data in patients with severe hepatic impairment (Child-Pugh score greater than 9) [see Use in Specific Populations (8.7)].
Body Mass Index (BMI)
For every 5 kg/m2 increase in BMI, AUC0-24hr and Cmax of aprepitant decrease by 9% and 10%. BMI of subjects in the analysis ranged from 18 kg/m2 to 36 kg/m2. This change is not considered clinically meaningful.
Drug Interactions Studies
Aprepitant is a substrate, a moderate (dose-dependent) inhibitor, and an inducer of CYP3A4. Aprepitant is also an inducer of CYP2C9. Aprepitant is unlikely to interact with drugs that are substrates for the P-glycoprotein transporter.
Effects of Aprepitant on the Pharmacokinetics of Other Drugs
CYP3A4 substrates (i.e., midazolam): Interactions between aprepitant and coadministered midazolam are listed in Table 12 (increase is indicated as "↑", decrease as "↓", no change as "↔").
Dosage of Aprepitant | Dosage of Midazolam | Observed Drug Interactions |
---|---|---|
Aprepitant 125 mg on Day 1 and 80 mg on Days 2 to 5 |
oral 2 mg single dose on Days 1 and 5 |
midazolam AUC ↑ 2.3-fold on Day 1 and ↑ 3.3-fold on Day 5 [see Drug Interactions (7.1)]
|
Aprepitant 125 mg on Day 1 and 80 mg on Days 2 and 3 |
intravenous 2 mg prior to 3-day regimen of aprepitant and on Days 4, 8 and 15 |
midazolam AUC ↑ 25% on Day 4, AUC ↓ 19% on Day 8 and AUC ↓ 4% on Day 15 |
Aprepitant 125 mg |
intravenous 2 mg given 1 hour after aprepitant |
midazolam AUC ↑ 1.5-fold |
Aprepitant 40 mg |
oral 2 mg |
midazolam AUC ↑ 1.2-fold on Day 1 |
A difference of less than 2-fold increase of midazolam AUC is not considered clinically important.
Corticosteroids:
Dexamethasone: Aprepitant, when given as a regimen of 125 mg on Day 1 and 80 mg/day on Days 2 through 5, coadministered with 20 mg dexamethasone on Day 1 and 8 mg dexamethasone on Days 2 through 5, increased the AUC of dexamethasone by 2.2-fold on Days 1 and 5 [see Dosage and Administration (2.1)]. A single dose of aprepitant (40 mg) when coadministered with a single dose of dexamethasone 20 mg, increased the AUC of dexamethasone by 1.45-fold, which is not considered clinically significant.
Methylprednisolone: Aprepitant, when given as a regimen of 125 mg on Day 1 and 80 mg/day on Days 2 and 3, coadministered with 125 mg methylprednisolone IV on Day 1 and 40 mg methylprednisolone orally on Days 2 and 3, increased the AUC of methylprednisolone by 1.34-fold on Day 1 and by 2.5-fold on Day 3.
Chemotherapeutic agents:
Docetaxel: In a pharmacokinetic study, aprepitant (125 mg/80 mg/80 mg regimen) did not influence the pharmacokinetics of docetaxel.
Vinorelbine: In a pharmacokinetic study, aprepitant (125 mg/80 mg/80 mg regimen) did not influence the pharmacokinetics of vinorelbine to a clinically significant degree.
CYP2C9 substrates (Warfarin, Tolbutamide):
Warfarin: A single 125 mg dose of aprepitant was administered on Day 1 and 80 mg/day on Days 2 and 3 to healthy subjects who were stabilized on chronic warfarin therapy. Although there was no effect of aprepitant on the plasma AUC of R(+) or S(-) warfarin determined on Day 3, there was a 34% decrease in S(-) warfarin trough concentration accompanied by a 14% decrease in the prothrombin time (reported as International Normalized Ratio or INR) 5 days after completion of dosing with aprepitant [see Drug Interactions (7.1)].
Tolbutamide: Aprepitant, when given as 125 mg on Day 1 and 80 mg/day on Days 2 and 3, decreased the AUC of tolbutamide by 23% on Day 4, 28% on Day 8, and 15% on Day 15, when a single dose of tolbutamide 500 mg was administered prior to the administration of the 3-day regimen of aprepitant and on Days 4, 8, and 15. This effect was not considered clinically important.
Aprepitant, when given as a 40 mg single dose on Day 1, decreased the AUC of tolbutamide by 8% on Day 2, 16% on Day 4, 15% on Day 8, and 10% on Day 15, when a single dose of tolbutamide 500 mg was administered prior to the administration of aprepitant 40 mg and on Days 2, 4, 8, and 15. This effect was not considered significant.
Other Drugs
Oral contraceptives: When aprepitant was administered as a 3-day regimen (125 mg/80 mg/80 mg) with ondansetron and dexamethasone, and coadministered with an oral contraceptive containing ethinyl estradiol and norethindrone, the trough concentrations of both ethinyl estradiol and norethindrone were reduced by as much as 64% for 3 weeks post-treatment.
P-glycoprotein substrates: Aprepitant is unlikely to interact with drugs that are substrates for the P-glycoprotein transporter, as demonstrated by the lack of interaction of aprepitant with digoxin in a clinical drug interaction study.
5-HT3 antagonists: In clinical drug interaction studies, aprepitant did not have clinically important effects on the pharmacokinetics of ondansetron, granisetron, or hydrodolasetron (the active metabolite of dolasetron).
Effect of Other Drugs on the Pharmacokinetics of Aprepitant
Ketoconazole: When a single 125 mg dose of aprepitant was administered on Day 5 of a 10-day regimen of 400 mg/day of ketoconazole, a strong CYP3A4 inhibitor, the AUC of aprepitant increased approximately 5-fold and the mean terminal half-life of aprepitant increased approximately 3-fold [see Drug Interactions (7.2)].
Rifampin: When a single 375 mg dose of aprepitant (3 times the maximum aprepitant recommended dose) was administered on Day 9 of a 14-day regimen of 600 mg/day of rifampin, a strong CYP3A4 inducer, the AUC of aprepitant decreased approximately 11-fold and the mean terminal half-life decreased approximately 3-fold [see Drug Interactions (7.2)].
Diltiazem: In patients with mild to moderate hypertension, administration of aprepitant once daily, as a tablet formulation comparable to 230 mg of the capsule formulation (approximately 1.8 times the aprepitant recommended dose), with diltiazem 120 mg 3 times daily for 5 days, resulted in a 2-fold increase of aprepitant AUC and a simultaneous 1.7-fold increase of diltiazem AUC. These pharmacokinetic effects did not result in clinically meaningful changes in ECG, heart rate or blood pressure beyond those changes induced by diltiazem alone [see Drug Interactions (7.2)].
Paroxetine: Coadministration of once daily doses of aprepitant, as a tablet formulation comparable to 85 mg or 170 mg of the capsule formulation (approximately 0.7 and 1.4 times the aprepitant maximum recommended dose), with paroxetine 20 mg once daily, resulted in a decrease in AUC by approximately 25% and Cmax by approximately 20% of both aprepitant and paroxetine. This effect was not considered clinically important.
Carcinogenesis
Carcinogenicity studies were conducted in Sprague-Dawley rats and in CD-1 mice for 2 years. In the rat carcinogenicity studies, animals were treated with oral doses ranging from 0.05 to 1000 mg/kg twice daily. The highest dose produced a systemic exposure to aprepitant (AUC) of 0.7 to 1.6 times the adult human exposure at the 125 mg/80 mg/80 mg aprepitant regimen. Treatment with aprepitant at doses of 5 to 1000 mg/kg twice daily caused an increase in the incidences of thyroid follicular cell adenomas and carcinomas in male rats. In female rats, it produced hepatocellular adenomas at 5 to 1000 mg/kg twice daily and hepatocellular carcinomas and thyroid follicular cell adenomas at 125 to 1000 mg/kg twice daily. In the mouse carcinogenicity studies, the animals were treated with oral doses ranging from 2.5 to 2000 mg/kg/day. The highest dose produced a systemic exposure of about 2.8 to 3.6 times the adult human exposure at the 125 mg/80 mg/80 mg aprepitant regimen. Treatment with aprepitant produced skin fibrosarcomas at 125 and 500 mg/kg/day doses in male mice.
Mutagenesis
Aprepitant was not genotoxic in the Ames test, the human lymphoblastoid cell (TK6) mutagenesis test, the rat hepatocyte DNA strand break test, the Chinese hamster ovary (CHO) cell chromosome aberration test and the mouse micronucleus test.
Impairment of Fertility
Aprepitant did not affect the fertility or general reproductive performance of male or female rats at doses up to the maximum feasible dose of 1000 mg/kg twice daily (providing exposure in male rats lower than the exposure at the recommended adult human dose and exposure in female rats at about 1.6 times the adult human exposure at the 125 mg/80 mg/80 mg aprepitant regimen).
Oral administration of aprepitant in combination with ondansetron and dexamethasone (aprepitant regimen) has been shown to prevent acute and delayed nausea and vomiting associated with HEC including high-dose cisplatin, and nausea and vomiting associated with MEC.
In Studies 1 and 2, both multicenter, randomized, parallel, double-blind, controlled clinical studies in adults, aprepitant in combination with ondansetron and dexamethasone was compared with standard therapy (ondansetron and dexamethasone alone) in patients receiving a chemotherapy regimen that included cisplatin greater than 50 mg/m2 (mean cisplatin dose = 80.2 mg/m2). See Table 13.
In these studies, 95% of the patients in the aprepitant group received a concomitant chemotherapeutic agent in addition to protocol-mandated cisplatin. The most common chemotherapeutic agents and the number of aprepitant patients exposed follows: etoposide (106), fluorouracil (100), gemcitabine (89), vinorelbine (82), paclitaxel (52), cyclophosphamide (50), doxorubicin (38), docetaxel (11).
Of the 550 patients who were randomized to receive the aprepitant regimen, 42% were women, 58% men, 59% White, 3% Asian, 5% Black, 12% Hispanic American, and 21% Multi-Racial. The aprepitant-treated patients in these clinical studies ranged from 14 to 84 years of age, with a mean age of 56 years. A total of 170 patients were 65 years or older, with 29 patients being 75 years or older.
Day 1 | Day 2 | Day 3 | Day 4 | |
---|---|---|---|---|
CINV Aprepitant Regimen | ||||
Oral Aprepitant† |
125 mg |
80 mg |
80 mg |
none |
Oral Dexamethasone‡ |
12 mg |
8 mg |
8 mg |
8 mg |
Ondansetron |
5-HT3 antagonist§ |
none |
none |
none |
CINV Standard Therapy | ||||
Oral Dexamethasone |
20 mg |
8 mg twice daily |
8 mg twice daily |
8 mg twice daily |
Ondansetron |
5-HT3 antagonist§ |
none |
none |
none |
*Aprepitant placebo and dexamethasone placebo were used to maintain blinding.
†Aprepitant was administered 1 hour prior to chemotherapy treatment on Day 1 and in the morning on Days 2 and 3.
‡Dexamethasone was administered 30 minutes prior to chemotherapy treatment on Day 1 and in the morning on Days 2 through 4. The 12 mg dose of dexamethasone on Day 1 reflects a dosage adjustment to account for a drug interaction with the aprepitant regimen [see Clinical Pharmacology (12.3)].
§Ondansetron 32 mg intravenous was used in the clinical trials of aprepitant. Although this dose was used in clinical trials, this is no longer the currently recommended dose. Refer to the ondansetron prescribing information for the current recommended dose.
The antiemetic activity of aprepitant was evaluated during the acute phase (0 to 24 hours post-cisplatin treatment), the delayed phase (25 to 120 hours post-cisplatin treatment) and overall (0 to 120 hours post-cisplatin treatment) in Cycle 1. Efficacy was based on evaluation of the following endpoints in which emetic episodes included vomiting, retching, or dry heaves:
A summary of the key study results from each individual study analysis is shown in Table 14. In both studies, a statistically significantly higher proportion of patients receiving the aprepitant regimen in Cycle 1 had a complete response in the overall phase (primary endpoint), compared with patients receiving standard therapy. A statistically significant difference in complete response in favor of the aprepitant regimen was also observed when the acute phase and the delayed phase were analyzed separately.
Study 1
|
Study 2
|
|||||
ENDPOINTS
|
Aprepitant Regimen (N=260)*
|
Standard Therapy
|
p-Value
|
Aprepitant Regimen (N=261)*
|
Standard Therapy
|
p-Value
|
PRIMARY ENDPOINT | ||||||
Complete Response | ||||||
Overall† |
73 |
52 |
<0.001 |
63 |
43 |
<0.001 |
OTHER PRESPECIFIED ENDPOINTS | ||||||
Complete Response | ||||||
Acute phase‡
|
89 |
78 |
<0.001 |
83 |
68 |
<0.001 |
Complete Protection | ||||||
Overall |
63 |
49 |
0.001 |
56 |
41 |
<0.001 |
No Emesis | ||||||
Overall |
78 |
55 |
<0.001 |
66 |
44 |
<0.001 |
No Nausea | ||||||
Overall |
48 |
44 |
NS#
|
49 |
39 |
NS¶
|
No Significant Nausea | ||||||
Overall |
73 |
66 |
NS#
|
71 |
64 |
NS#
|
Visual analogue scale (VAS) score range: 0 mm=no nausea; 100 mm=nausea as bad as it could be.
*N: Number of patients (older than 18 years of age) who received cisplatin, study drug, and had at least one post-treatment efficacy evaluation.
†Overall: 0 to 120 hours post-cisplatin treatment.
‡Acute phase: 0 to 24 hours post-cisplatin treatment.
§Delayed phase: 25 to 120 hours post-cisplatin treatment.
¶Not statistically significant when adjusted for multiple comparisons.
#Not statistically significant.
In both studies, the estimated time to first emesis after initiation of cisplatin treatment was longer with the aprepitant regimen, and the incidence of first emesis was reduced in the aprepitant regimen group compared with standard therapy group as depicted in the Kaplan-Meier curves in Figure 1.
Figure 1: Percent of Patients Receiving HEC Who Remain Emesis Free Over Time — Cycle 1
p-Value <0.001 based on a log rank test for Study 1 and Study 2; nominal p-values not adjusted for multiplicity.
Additional Patient-Reported Outcomes: The impact of nausea and vomiting on patients' daily lives was assessed in Cycle 1 of both studies using the Functional Living Index–Emesis (FLIE), a validated nausea-and vomiting-specific patient-reported outcome measure. Minimal or no impact of nausea and vomiting on patients' daily lives is defined as a FLIE total score greater than 108. In each of the 2 studies, a higher proportion of patients receiving the aprepitant regimen reported minimal or no impact of nausea and vomiting on daily life (Study 1: 74% versus 64%; Study 2: 75% versus 64%).
Multiple-Cycle Extension: In the same 2 clinical studies, patients continued into the Multiple-Cycle extension for up to 5 additional cycles of chemotherapy. The proportion of patients with no emesis and no significant nausea by treatment group at each cycle is depicted in Figure 2. Antiemetic effectiveness for the patients receiving the aprepitant regimen was maintained throughout repeat cycles for those patients continuing in each of the multiple cycles.
Figure 2: Proportion of Patients Receiving HEC with No Emesis and No Significant Nausea by Treatment Group and Cycle
Aprepitant was studied in two randomized, double-blind, parallel-group studies (Studies 3 and 4) in adult patients receiving MEC.
In Study 3, in breast cancer patients, aprepitant in combination with ondansetron and dexamethasone was compared with standard therapy (ondansetron and dexamethasone) in patients receiving a MEC regimen that included cyclophosphamide 750 to 1500 mg/m2; or cyclophosphamide 500 to 1500 mg/m2 and doxorubicin (less than or equal to 60 mg/m2) or epirubicin (less than or equal to 100 mg/m2). See Table 15.
In this study, the most common combinations were cyclophosphamide + doxorubicin (61%); and cyclophosphamide + epirubicin + fluorouracil (22%).
Of the 438 patients who were randomized to receive the aprepitant regimen, 99.5% were women. Of these, approximately 80% were White, 8% Black, 8% Asian, 4% Hispanic, and less than 1% Other. The aprepitant-treated patients in this clinical study ranged from 25 to 78 years of age, with a mean age of 53 years; 70 patients were 65 years or older, with 12 patients being over 74 years.
Day 1 |
Day 2 |
Day 3 |
|
CINV Aprepitant Regimen | |||
Oral Aprepitant† |
125 mg |
80 mg |
80 mg |
Oral Dexamethasone |
12 mg‡ |
none |
none |
Oral Ondansetron |
8 mg × 2 doses§ |
none |
none |
CINV Standard Therapy | |||
Oral Dexamethasone |
20 mg‡ |
none |
none |
Oral Ondansetron |
8 mg × 2 doses§ |
8 mg twice daily |
8 mg twice daily |
*Aprepitant placebo and dexamethasone placebo were used to maintain blinding.
†Aprepitant was administered 1 hour prior to chemotherapy treatment on Day 1 and in the mornings on Days 2 and 3.
‡Dexamethasone was administered 30 minutes prior to chemotherapy treatment on Day 1. The 12 mg dose of dexamethasone on Day 1 reflects a dosage adjustment to account for a drug interaction with the aprepitant regimen [see Clinical Pharmacology (12.3)].
§The first ondansetron dose was administered 30 to 60 minutes prior to chemotherapy treatment on Day 1 and the second dose was administered 8 hours after first ondansetron dose.
The antiemetic activity of aprepitant was evaluated based on the following endpoints in which emetic episodes included vomiting, retching, or dry heaves:
Other prespecified endpoints:
A summary of the key results from Study 3 is shown in Table 16. In Study 3, a statistically significantly (p=0.015) higher proportion of patients receiving the aprepitant regimen (51%) in Cycle 1 had a complete response (primary endpoint) during the overall phase compared with patients receiving standard therapy (42%). The difference between treatment groups was primarily driven by the "No Emesis Endpoint", a principal component of this composite primary endpoint. In addition, a higher proportion of patients receiving the aprepitant regimen in Cycle 1 had a complete response during the acute (0 to 24 hours) and delayed (25 to 120 hours) phases compared with patients receiving standard therapy; however, the treatment group differences failed to reach statistical significance, after multiplicity adjustments.
ENDPOINTS
|
Aprepitant
|
Standard Therapy
|
p-Value
|
PRIMARY ENDPOINT† | |||
Complete Response |
51 |
42 |
0.015 |
OTHER PRESPECIFIED ENDPOINTS† | |||
No Emesis |
76 |
59 |
NS‡ |
No Nausea |
33 |
33 |
NS |
No Significant Nausea |
61 |
56 |
NS |
No Rescue Therapy |
59 |
56 |
NS |
Complete Protection |
43 |
37 |
NS |
*N: Number of patients included in the primary analysis of complete response.
†Overall: 0 to 120 hours post-chemotherapy treatment.
‡NS when adjusted for prespecified multiple comparisons rule; unadjusted p-value <0.001.
Additional Patient-Reported Outcomes: In Study 3, in patients receiving MEC, the impact of nausea and vomiting on patients' daily lives was assessed in Cycle 1 using the FLIE. A higher proportion of patients receiving the aprepitant regimen reported minimal or no impact on daily life (64% versus 56%). This difference between treatment groups was primarily driven by the "No Vomiting Domain" of this composite endpoint.
Multiple-Cycle Extension: In Study 3, patients receiving MEC were permitted to continue into the Multiple-Cycle extension of the study for up to 3 additional cycles of chemotherapy. The antiemetic effect for patients receiving the aprepitant regimen was maintained during all cycles.
In Study 4, aprepitant in combination with ondansetron and dexamethasone was compared with a standard therapy (ondansetron and dexamethasone alone) in patients receiving a MEC regimen that included any intravenous dose of oxaliplatin, carboplatin, epirubicin, idarubicin, ifosfamide, irinotecan, daunorubicin, doxorubicin; cyclophosphamide intravenous (less than 1500 mg/m2); or cytarabine intravenous (greater than 1 g/m2). See Table 15. Patients receiving the aprepitant regimen were receiving chemotherapy for a variety of tumor types including 50% with breast cancer, 21% with gastrointestinal cancers including colorectal cancer, 13% with lung cancer and 6% with gynecological cancers.
Of the 430 patients who were randomized to receive the aprepitant regimen, 76% were women and 24% were men. The distribution by race was 67% White, 6% Black or African American, 11% Asian, and 12% multiracial. Classified by ethnicity, 36% were Hispanic and 64% were non-Hispanic. The aprepitant-treated patients in this clinical study ranged from 22 to 85 years of age, with a mean age of 57 years; approximately 59% of the patients were 55 years or older with 32 patients being over 74 years.
The antiemetic activity of aprepitant was evaluated based on no vomiting (with or without rescue therapy) in the overall period (0 to 120 hours post-chemotherapy) and complete response (defined as no vomiting and no use of rescue therapy) in the overall period.
A summary of the key results from Study 4 is shown in Table 17. In Study 4, a statistically significantly higher proportion of patients receiving the aprepitant regimen (76%) in Cycle 1 had no vomiting during the overall phase compared with patients receiving standard therapy (62%). In addition, a higher proportion of patients receiving the aprepitant regimen (69%) in Cycle 1 had a complete response in the overall phase (0 to 120 hours) compared with patients receiving standard therapy (56%). In the acute phase (0 to 24 hours following initiation of chemotherapy), a higher proportion of patients receiving aprepitant compared to patients receiving standard therapy were observed to have no vomiting (92% and 84%, respectively) and complete response (89% and 80%, respectively). In the delayed phase (25 to 120 hours following initiation of chemotherapy), a higher proportion of patients receiving aprepitant compared to patients receiving standard therapy were observed to have no vomiting (78% and 67%, respectively) and complete response (71% and 61%, respectively).
In a subgroup analysis by tumor type, a numerically higher proportion of patients receiving aprepitant were observed to have no vomiting and complete response compared to patients receiving standard therapy. For sex, the difference in complete response rates between the aprepitant and standard regimen groups was 14% in females (64.5% and 50.3%, respectively) and 4% in males (82.2% and 78.2%, respectively) during the overall phase. A similar difference for sex was observed for the no vomiting endpoint.
ENDPOINTS
|
Aprepitant Regimen
|
Standard Therapy
|
p-Value
|
No Vomiting Overall |
76 |
62 |
<0.0001 |
Complete Response Overall |
69 |
56 |
0.0003 |
*N = Number of patients who received chemotherapy treatment, study drug, and had at least one post-treatment efficacy evaluation.
In a randomized, double-blind, active comparator-controlled clinical study that included 302 pediatric patients aged 6 months to 17 years receiving HEC or MEC, aprepitant in combination with ondansetron was compared to ondansetron alone (control regimen) for the prevention of CINV (Study 5). Intravenous dexamethasone was permitted as part of the antiemetic regimen in both treatment groups, at the discretion of the physician. A 50% dose reduction of dexamethasone was required for patients in the aprepitant group, reflecting a dosage adjustment to account for a drug interaction [see Clinical Pharmacology (12.3)]. No dexamethasone dose reduction was required for patients who received the control regimen.
Eligible patients had documented malignancy at either an original diagnosis or relapse and were scheduled to receive emetogenic chemotherapy or a chemotherapy regimen not previously tolerated due to vomiting along with ondansetron as part of their antiemetic regimen.
Of the 152 pediatric patients randomized to receive the aprepitant regimen, 55% were male, 45% female, 78% White, 7% Asian, 0% Black, 24% Hispanic, and 13% Multi-Racial. The most common primary malignancies in subjects receiving the aprepitant regimen were osteosarcoma (11%), Ewing’s sarcoma (11%), neuroblastoma (9%) and rhabdomyosarcoma (8%). Other concomitant chemotherapy agents commonly administered and the number of aprepitant patients exposed were: vincristine sulfate (65), etoposide (59), doxorubicin (48), ifosfamide (45), carboplatin (39), and cisplatin (35).
The treatment regimens in Study 5 for pediatric patients are defined in Table 18. Of the pediatric patients, 29% in the aprepitant regimen and 28% in the control regimen used dexamethasone as part of the antiemetic regimen in Cycle 1.
Table 18: HEC and MEC Treatment Regimens* for Pediatric Patients 6 Months to 17 Years of Age— Study 5
Day 1 |
Day 2 |
Day 3 |
|
CINV aprepitant Regimen | |||
Pediatric Patients 6 Months to less than 12 Years of Age |
3 mg/kg body weight oral suspension |
2 mg/kg body weight oral suspension |
2 mg/kg body weight oral suspension |
Pediatric Patients 12 to 17 Years of Age† |
125 mg capsule |
80 mg capsule |
80 mg capsule |
Ondansetron |
Per standard of care |
none |
none |
CINV Control Regimen | |||
Ondansetron |
Per standard of care‡ |
none |
none |
‡Ondansetron was administered 30 minutes prior to chemotherapy on Day 1§aprepitant placebo was used to maintain blinding.
The antiemetic activity of aprepitant was evaluated over a 5-day (120 hour) period following the initiation of chemotherapy on Day 1. The primary endpoint in Study 5 was complete response in the delayed phase (25 to 120 hours following chemotherapy) in Cycle 1. Patients had the opportunity to receive open-label aprepitant in subsequent cycles (Optional Cycles 2-6); however, efficacy was not assessed in these optional cycles. Overall efficacy was based on the evaluation of the following endpoints:
Primary endpoint:
A summary of the key study results are shown in Table 19.
Table 19: Percent of Patients Who Responded to Treatment by Treatment Group and Phase – Cycle 1 of Study 5
Aprepitant Regimen n/m (%) |
Control Regimen n/m (%) |
|
PRIMARY ENDPOINT |
||
Complete Response - Delayed phase |
77/152 (50.7) |
39/150 (26.0) |
OTHER PRESPECIFIED ENDPOINTS |
||
Complete Response* – Acute phase |
101/152 (66.4) |
78/150 (52.0) |
Complete Response* – Overall phase |
61/152 (40.1)† |
30/150 (20.0) |
*Complete Response = No vomiting or retching and no use of rescue medication.
†p<0.01 when compared to Control Regimen
‡ p<0.05 when compared to Control Regimen n/m = Number of patients with desired response/number of patients included in time point. Acute Phase: 0 to 24 hours following initiation of chemotherapy. Delayed Phase: 25 to 120 hours following initiation of chemotherapy. Overall Phase: 0 to 120 hours following initiation of chemotherapy.
In two multicenter, randomized, double-blind, active comparator-controlled, parallel-group clinical studies (Studies 7 and 8), aprepitant was compared with ondansetron for the prevention of postoperative nausea and vomiting in 1658 patients undergoing open abdominal surgery. These two studies were of similar design; however, they differed in terms of study hypothesis, efficacy analyses and geographic location. Study 7 was a multinational study including the U.S., whereas, Study 8 was conducted entirely in the U.S.
In the two studies, patients were randomized to receive 40 mg aprepitant, 125 mg aprepitant, or 4 mg ondansetron as a single dose. Aprepitant was given orally with 50 mL of water 1 to 3 hours before anesthesia. Ondansetron was given intravenously immediately before induction of anesthesia. A comparison between the aprepitant 125 mg dose did not demonstrate any additional clinical benefit over the 40 mg dose and is not a recommended dosage regimen [see Dosage and Administration (2.2)].
Of the 564 patients who received 40 mg aprepitant, 92% were women and 8% were men; of these, 58% were White, 13% Hispanic American, 7% Multi-Racial, 14% Black, 6% Asian, and 2% Other. The age of patients treated with 40 mg aprepitant ranged from 19 to 84 years, with a mean age of 46.1 years. 46 patients were 65 years or older, with 13 patients being 75 years or older.
The antiemetic activity of aprepitant was evaluated during the 0 to 48 hour period following the end of surgery.
A closed testing procedure was applied to control the type I error for the primary endpoints.
The results of the primary and secondary endpoints for 40 mg aprepitant and 4 mg ondansetron are described in Table 20:
Table 20: Response Rates for Select Efficacy Endpoints (Modified-Intention-to-Treat Population) – Study 7
n/m = Number of responders/number of patients in analysis. | ||||
Δ Difference (%): Aprepitant 40 mg minus Ondansetron. | ||||
Treatment
|
n/m (%)
|
Aprepitant
|
||
Δ |
Odds ratio* |
Analysis |
||
PRIMARY ENDPOINTS |
||||
No Vomiting 0 to 24 hours (Superiority) |
||||
Aprepitant 40 mg |
246/293 (84.0) |
12.6% |
2.1 |
P<0.001† |
Ondansetron |
200/280 (71.4) | |||
Complete Response (Non-inferiority: If LB‡ >0.65) |
||||
Aprepitant 40 mg |
187/293 (63.8) |
8.8% |
1.4 |
LB=1.02 |
Ondansetron |
154/280 (55.0) | |||
Complete Response (Superiority: If LB >1.0) |
||||
Aprepitant 40 mg |
187/293 (63.8) |
8.8% |
1.4 |
LB=1.02‡ |
Ondansetron |
154/280 (55.0) | |||
SECONDARY ENDPOINT |
||||
No Vomiting 0 to 48 hours (Superiority) |
||||
Aprepitant 40 mg |
238/292 (81.5) |
15.2% |
2.3 |
P<0.001§ |
Ondansetron |
185/279 (66.3) |
*Estimated odds ratio for aprepitant versus Ondansetron. A value of >1 favors aprepitant over Ondansetron.
†P-value of two-sided test <0.05.
‡LB = lower bound of 1-sided 97.5% confidence interval for the odds ratio.
§Based on the prespecified fixed sequence multiplicity strategy, aprepitant 40 mg was not superior to Ondansetron.
In Study 7, the use of aprepitant did not affect the time to first use of rescue medication when compared to ondansetron. However, compared to the ondansetron group, use of aprepitant delayed the time to first vomiting, as depicted in Figure 3.
Figure 3: Percent of Patients Who Remain Emesis Free During the 48 Hours Following End of Surgery – Study 7
Study 8 failed to satisfy its primary hypothesis that aprepitant is superior to ondansetron in the prevention of PONV as measured by the proportion of patients with complete response in the 24 hours following end of surgery.
The study demonstrated that 40 mg aprepitant had a clinically meaningful effect with respect to the secondary endpoint "no vomiting" during the first 24 hours after surgery and was associated with a 16% improvement over ondansetron for the no vomiting endpoint.
Table 21: Response Rates for Select Efficacy Endpoints (Modified-Intention-to-Treat
Population) – Study 8
Treatment
|
n/m (%)
|
Aprepitant
|
||
Δ |
Odds ratio* |
Analysis |
||
PRIMARY ENDPOINT |
||||
Complete Response
|
||||
Aprepitant 40 mg |
111/248 (44.8) |
2.5% |
1.1 |
0.61 |
Ondansetron |
104/246 (42.3) | |||
SECONDARY ENDPOINTS |
||||
No Vomiting
|
||||
Aprepitant 40 mg |
223/248 (89.9) |
16.3% |
3.2 |
<0.001† |
Ondansetron |
181/246 (73.6) | |||
No Use of Rescue Medication
|
||||
Aprepitant 40 mg |
112/248 (45.2) |
-0.7% |
1.0 |
0.83 |
Ondansetron |
113/246 (45.9) | |||
No Vomiting 0 to 48 hours (Superiority) |
||||
Aprepitant 40 mg |
209/247 (84.6) |
17.7% |
2.7 |
<0.001* |
Ondansetron |
164/245 (66.9) |
n/m = Number of responders/number of patients in analysis.
Δ Difference (%): Aprepitant 40 mg minus Ondansetron.
*Estimated odds ratio: Aprepitant 40 mg versus Ondansetron.
†Not statistically significant after pre-specified multiplicity adjustment.
Aprepitant Capsules USP, 125 mg: hard gelatin capsules with a pink opaque colored cap imprinted with a Glenmark logo 'G' in black ink and a white opaque colored body imprinted with '585' in black ink. They are supplied as follows:
Aprepitant Capsules USP, 80 mg: hard gelatin capsules with a white opaque colored cap imprinted with a Glenmark logo 'G' in black ink and a white opaque colored body imprinted with '584' in black ink. They are supplied as follows:
Aprepitant Capsules USP, 3-day pack (125 mg/80 mg/80 mg):
Aprepitant Capsules USP, 40 mg: hard gelatin capsules with a mustard yellow colored cap imprinted with a Glenmark logo 'G' in black ink and a white opaque colored body imprinted with '583' in black ink. They are supplied as follows:
Storage and Handling
Store at 20°C to 25°C (68°F to 77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) [see USP Controlled Room Temperature].
Advise the patient to read the FDA-approved patient labeling (Patient Information).
Hypersensitivity Reactions
Advise patients that hypersensitivity reactions, including anaphylaxis, have been reported in patients taking aprepitant. Advise patients to stop taking aprepitant and seek immediate medical attention if they experience signs or symptoms of a hypersensitivity reaction, such as hives, rash and itching, skin peeling or sores, or difficulty in breathing or swallowing.
Drug Interactions
Advise patients to discuss all medications they are taking, including other prescription, non-prescription medication or herbal products [see Contraindications (4), Warnings and Precautions (5.1)].
Warfarin: Instruct patients on chronic warfarin therapy to follow instructions from their healthcare provider regarding blood draws to monitor their INR during the 2-week period, particularly at 7 to 10 days, following initiation of the 3-day regimen of aprepitant with each chemotherapy cycle, or following administration of a single 40-mg dose of aprepitant for the prevention of postoperative nausea and vomiting [see Warnings and Precautions (5.2)].
Hormonal Contraceptives: Advise patients that administration of aprepitant may reduce the efficacy of hormonal contraceptives. Instruct patients to use effective alternative or back-up methods of contraception (such as condoms and spermicides) during treatment with aprepitant and for 1 month following the last dose of aprepitant [see Warnings and Precautions (5.3), Use in Specific Populations (8.3)].
Manufactured by:
Manufactured by:
Glenmark Pharmaceuticals Limited
Plot No. 2, Phase-2, Pharma Zone SEZ
Pithampur, Dist.-Dhar
Madhya Pradesh 454 775, India
Manufactured for:
Glenmark Pharmaceuticals Inc., USA
Mahwah, NJ 07430
Product of India
Questions? 1 (888) 721-7115
www.glenmarkpharma-us.com
January 2020
This Patient Information has been approved by the U.S. Food and Drug Administration.
Revised: January 2020
APREPITANT
aprepitant capsule |
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
|
APREPITANT
aprepitant capsule |
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
APREPITANT
aprepitant capsule |
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
APREPITANT
aprepitant kit |
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
|
Labeler - Glenmark Pharmaceuticals Inc., USA (130597813) |
Establishment | |||
Name | Address | ID/FEI | Business Operations |
---|---|---|---|
Glenmark Life Sciences Limited | 650283737 | API MANUFACTURE(68462-583, 68462-584, 68462-585, 68462-112) |
Establishment | |||
Name | Address | ID/FEI | Business Operations |
---|---|---|---|
Glenmark Pharmaceuticals Limited | 862603186 | MANUFACTURE(68462-583, 68462-584, 68462-585, 68462-112) , ANALYSIS(68462-583, 68462-584, 68462-585, 68462-112) |