Romidepsin by is a Prescription medication manufactured, distributed, or labeled by PFIZER LABORATORIES DIV PFIZER INC, Celgene Corporation. Drug facts, warnings, and ingredients follow.
| 11/2018 |
Romidepsin is a histone deacetylase (HDAC) inhibitor indicated for:
For injection: 10 mg of romidepsin as a lyophilized powder in single-dose vial for reconstitution. (3).
None (4).
The most common adverse reactions were neutropenia, lymphopenia, thrombocytopenia, infections, nausea, fatigue, vomiting, anorexia, anemia, and ECG T-wave changes (6).
To report SUSPECTED ADVERSE REACTIONS, contact Pfizer Inc. at 1-800-438-1985 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.
Revised: 11/2018
Romidepsin is indicated for the treatment of cutaneous T-cell lymphoma (CTCL) in adult patients who have received at least one prior systemic therapy.
Romidepsin is indicated for the treatment of peripheral T-cell lymphoma (PTCL) in adult patients who have received at least one prior therapy.
This indication is approved under accelerated approval based on response rate [see Clinical Studies (14.2)]. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
The recommended dose of romidepsin is 14 mg/m2 administered intravenously over a 4-hour period on days 1, 8, and 15 of a 28-day cycle. Cycles should be repeated every 28 days provided that the patient continues to benefit from and tolerates the drug.
Nonhematologic toxicities except alopecia
Hematologic toxicities
For patients with moderate or severe hepatic impairment, reduce the starting dose of romidepsin as shown in Table 1 and monitor for toxicities more frequently. Dose adjustment is not required for patients with mild hepatic impairment.
Hepatic Impairment | Bilirubin Levels | Romidepsin Dose |
---|---|---|
ULN=Upper limit of normal. | ||
Moderate | > 1.5 × ULN to ≤ 3 × ULN | 7 mg/m2 |
Severe | > 3 × ULN | 5 mg/m2 |
Romidepsin is a cytotoxic drug. Use appropriate handling procedures.
Romidepsin must be reconstituted with the supplied diluent and further diluted with 0.9% Sodium Chloride Injection, USP, before intravenous infusion.
Romidepsin and diluent vials contain an overfill to ensure the recommended volume can be withdrawn at a concentration of 5 mg/mL.
The diluted solution is compatible with polyvinyl chloride (PVC), ethylene vinyl acetate (EVA), polyethylene (PE) infusion bags as well as glass bottles, and is chemically stable for up to 24 hours when stored at room temperature. However, it should be administered as soon after dilution as possible.
Parenteral drug products should be inspected visually for particulate matter and discoloration before administration, whenever solution and container permit.
Romidepsin is supplied as a kit which includes a sterile, lyophilized powder in a 10 mg single-dose vial containing 11 mg of romidepsin and 22 mg of the bulking agent, povidone, USP. In addition, each kit includes a single-dose sterile vial containing 2.4 mL (2.2 mL deliverable volume) of the diluent composed of 80% propylene glycol, USP, and 20% dehydrated alcohol, USP.
Treatment with romidepsin can cause thrombocytopenia, leukopenia (neutropenia and lymphopenia), and anemia. Monitor blood counts regularly during treatment with romidepsin and modify the dose as necessary [see Dosage and Administration (2.2) and Adverse Reactions (6.1)].
Fatal and serious infections, including pneumonia, sepsis, and viral reactivation, including Epstein Barr and hepatitis B viruses, have been reported in clinical trials with romidepsin. These can occur during treatment and within 30 days after treatment. The risk of life threatening infections may be greater in patients with a history of prior treatment with monoclonal antibodies directed against lymphocyte antigens and in patients with disease involvement of the bone marrow [see Adverse Reactions (6.1)].
Reactivation of hepatitis B virus infection has occurred in 1% of PTCL patients in clinical trials in Western populations [see Adverse Reactions (6.1)]. In patients with evidence of prior hepatitis B infection, consider monitoring for reactivation, and consider antiviral prophylaxis.
Reactivation of Epstein Barr viral infection leading to liver failure has occurred in a trial of patients with relapsed or refractory extranodal NK/T-cell lymphoma. In one case, ganciclovir prophylaxis failed to prevent Epstein Barr viral reactivation.
Several treatment-emergent morphological changes in ECGs (including T-wave and ST-segment changes) have been reported in clinical studies. The clinical significance of these changes is unknown [see Adverse Reactions (6.1)].
In patients with congenital long QT syndrome, patients with a history of significant cardiovascular disease, and patients taking anti-arrhythmic medicines or medicinal products that lead to significant QT prolongation, consider cardiovascular monitoring of ECGs at baseline and periodically during treatment.
Confirm that potassium and magnesium levels are within normal range before administration of romidepsin [see Adverse Reactions (6.1)].
Tumor lysis syndrome (TLS) has been reported to occur in 1% of patients with tumor stage CTCL and 2% of patients with Stage III/IV PTCL. Patients with advanced stage disease and/or high tumor burden are at greater risk, should be closely monitored, and managed as appropriate.
Based on its mechanism of action and findings from animal studies, romidepsin can cause fetal harm when administered to a pregnant woman. In an animal reproductive study, romidepsin was embryocidal and caused adverse developmental outcomes at exposures below those in patients at the recommended dose of 14 mg/m2. Advise females of reproductive potential to use effective contraception during treatment and for at least 1 month after the last dose. Advise males with female sexual partners of reproductive potential to use effective contraception during treatment and for at least 1 month after the last dose [see Use in Specific Populations (8.1, 8.3) and Clinical Pharmacology (12.1)].
The following adverse reactions are described in more detail in other sections of the prescribing information.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Cutaneous T-Cell Lymphoma
The safety of romidepsin was evaluated in 185 patients with CTCL in 2 single arm clinical studies in which patients received a starting dose of 14 mg/m2. The mean duration of treatment in these studies was 5.6 months (range: <1 to 83.4 months).
Common Adverse Reactions
Table 2 summarizes the most frequent adverse reactions (>20%) regardless of causality using the National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE, Version 3.0). Due to methodological differences between the studies, the AE data are presented separately for Study 1 and Study 2. Adverse reactions are ranked by their incidence in Study 1. Laboratory abnormalities commonly reported (>20%) as adverse reactions are included in Table 2.
Adverse Reactions n (%) | Study 1 (n=102) | Study 2 (n=83) |
||
---|---|---|---|---|
All grades | Grade 3 or 4 | All grades | Grade 3 or 4 | |
Any adverse reactions | 99 (97) | 36 (35) | 83 (100) | 68 (82) |
Nausea | 57 (56) | 3 (3) | 71 (86) | 5 (6) |
Asthenia/Fatigue | 54 (53) | 8 (8) | 64 (77) | 12 (14) |
Infections | 47 (46) | 11 (11) | 45 (54) | 27 (33) |
Vomiting | 35 (34) | 1 (<1) | 43 (52) | 8 (10) |
Anorexia | 23 (23) | 1 (<1) | 45 (54) | 3 (4) |
Hypomagnesemia | 22 (22) | 1 (<1) | 23 (28) | 0 |
Diarrhea | 20 (20) | 1 (<1) | 22 (27) | 1 (1) |
Pyrexia | 20 (20) | 4 (4) | 19 (23) | 1 (1) |
Anemia | 19 (19) | 3 (3) | 60 (72) | 13 (16) |
Thrombocytopenia | 17 (17) | 0 | 54 (65) | 12 (14) |
Dysgeusia | 15 (15) | 0 | 33 (40) | 0 |
Constipation | 12 (12) | 2 (2) | 32 (39) | 1 (1) |
Neutropenia | 11 (11) | 4 (4) | 47 (57) | 22 (27) |
Hypotension | 7 (7) | 3 (3) | 19 (23) | 3 (4) |
Pruritus | 7 (7) | 0 | 26 (31) | 5 (6) |
Hypokalemia | 6 (6) | 0 | 17 (20) | 2 (2) |
Dermatitis/Exfoliative dermatitis | 4 (4) | 1 (<1) | 22 (27) | 7 (8) |
Hypocalcemia | 4 (4) | 0 | 43 (52) | 5 (6) |
Leukopenia | 4 (4) | 0 | 38 (46) | 18 (22) |
Lymphopenia | 4 (4) | 0 | 47 (57) | 31 (37) |
Alanine aminotransferase increased | 3 (3) | 0 | 18 (22) | 2 (2) |
Aspartate aminotransferase increased | 3 (3) | 0 | 23 (28) | 3 (4) |
Hypoalbuminemia | 3 (3) | 1 (<1) | 40 (48) | 3 (4) |
Electrocardiogram ST-T wave changes | 2 (2) | 0 | 52 (63) | 0 |
Hyperglycemia | 2 (2) | 2 (2) | 42 (51) | 1 (1) |
Hyponatremia | 1 (<1) | 1 (<1) | 17 (20) | 2 (2) |
Hypermagnesemia | 0 | 0 | 22 (27) | 7 (8) |
Hypophosphatemia | 0 | 0 | 22 (27) | 8 (10) |
Hyperuricemia | 0 | 0 | 27 (33) | 7 (8) |
Serious Adverse Reactions
Infections were the most common type of SAE reported in both studies with 8 patients (8%) in Study 1 and 26 patients (31%) in Study 2 experiencing a serious infection. Serious adverse reactions reported in >2% of patients in Study 1 were sepsis and pyrexia (3%). In Study 2, serious adverse reactions in >2% of patients were fatigue (7%), supraventricular arrhythmia, central line infection, neutropenia (6%), hypotension, hyperuricemia, edema (5%), ventricular arrhythmia, thrombocytopenia, nausea, leukopenia, dehydration, pyrexia, aspartate aminotransferase increased, sepsis, catheter related infection, hypophosphatemia and dyspnea (4%).
There were eight deaths not due to disease progression. In Study 1, there were two deaths: one due to cardiopulmonary failure and one due to acute renal failure. There were six deaths in Study 2: four due to infection and one each due to myocardial ischemia and acute respiratory distress syndrome.
Peripheral T-Cell Lymphoma
The safety of romidepsin was evaluated in 178 patients with PTCL in a sponsor-conducted pivotal study (Study 3) and a secondary NCI-sponsored study (Study 4) in which patients received a starting dose of 14 mg/m2. The mean duration of treatment and number of cycles were 5.6 months and 6 cycles in Study 3 and 9.6 months and 8 cycles in Study 4.
Common Adverse Reactions
Table 3 summarizes the most frequent adverse reactions (≥10%) regardless of causality, using the NCI-CTCAE, Version 3.0. The AE data are presented separately for Study 3 and Study 4. Laboratory abnormalities commonly reported (≥10%) as adverse reactions are included in Table 3.
Adverse Reactions n (%) | Study 3 (N=131) | Study 4 (N=47) |
||
---|---|---|---|---|
All grades | Grade 3 or 4 | All grades | Grade 3 or 4 | |
Any adverse reactions | 128 (97) | 88 (67) | 47 (100) | 40 (85) |
Gastrointestinal disorders | ||||
Nausea | 77 (59) | 3 (2) | 35 (75) | 3 (6) |
Vomiting | 51 (39) | 6 (5) | 19 (40) | 4 (9) |
Diarrhea | 47 (36) | 3 (2) | 17 (36) | 1 (2) |
Constipation | 39 (30) | 1 (<1) | 19 (40) | 1 (2) |
Abdominal pain | 18 (14) | 3 (2) | 6 (13) | 1 (2) |
Stomatitis | 14 (11) | 0 | 3 (6) | 0 |
General disorders and administration site conditions | ||||
Asthenia/Fatigue | 72 (55) | 11 (8) | 36 (77) | 9 (19) |
Pyrexia | 46 (35) | 8 (6) | 22 (47) | 8 (17) |
Chills | 14 (11) | 1 (<1) | 8 (17) | 0 |
Edema peripheral | 13 (10) | 1 (<1) | 3 (6) | 0 |
Blood and lymphatic system disorders | ||||
Thrombocytopenia | 53 (41) | 32 (24) | 34 (72) | 17 (36) |
Neutropenia | 39 (30) | 26 (20) | 31 (66) | 22 (47) |
Anemia | 33 (25) | 14 (11) | 29 (62) | 13 (28) |
Leukopenia | 16 (12) | 8 (6) | 26 (55) | 21 (45) |
Metabolism and nutrition disorders | ||||
Anorexia | 37 (28) | 2 (2) | 21 (45) | 1 (2) |
Hypokalemia | 14 (11) | 3 (2) | 8 (17) | 1 (2) |
Nervous system disorders | ||||
Dysgeusia | 27 (21) | 0 | 13 (28) | 0 |
Headache | 19 (15) | 0 | 16 (34) | 1 (2) |
Respiratory, thoracic and mediastinal disorders | ||||
Cough | 23 (18) | 0 | 10 (21) | 0 |
Dyspnea | 17 (13) | 3 (2) | 10 (21) | 2 (4) |
Investigations | ||||
Weight decreased | 14 (11) | 0 | 7 (15) | 0 |
Cardiac disorders | ||||
Tachycardia | 13 (10) | 0 | 0 | 0 |
Serious Adverse Reactions
Infections were the most common type of SAE reported. In Study 3, twenty-six patients (20%) experienced a serious infection, including 6 patients (5%) with serious treatment-related infections. In Study 4, eleven patients (23%) experienced a serious infection, including 8 patients (17%) with serious treatment-related infections. Serious adverse reactions reported in ≥2% of patients in Study 3 were pyrexia (8%), pneumonia, sepsis, vomiting (5%), cellulitis, deep vein thrombosis, (4%), febrile neutropenia, abdominal pain (3%), chest pain, neutropenia, pulmonary embolism, dyspnea, and dehydration (2%). In Study 4, serious adverse reactions in ≥2 patients were pyrexia (17%), aspartate aminotransferase increased, hypotension (13%), anemia, thrombocytopenia, alanine aminotransferase increased (11%), infection, dehydration, dyspnea (9%), lymphopenia, neutropenia, hyperbilirubinemia, hypocalcemia, hypoxia (6%), febrile neutropenia, leukopenia, ventricular arrhythmia, vomiting, hypersensitivity, catheter related infection, hyperuricemia, hypoalbuminemia, syncope, pneumonitis, packed red blood cell transfusion, and platelet transfusion (4%).
Reactivation of hepatitis B virus infection has occurred in 1% of patients with PTCL in clinical trials in Western populations enrolled in Study 3 and Study 4 [see Warnings and Precautions (5.2)].
Deaths due to all causes within 30 days of the last dose of romidepsin occurred in 7% of patients in Study 3 and 17% of patients in Study 4. In Study 3, there were 5 deaths unrelated to disease progression that were due to infections, including multi-organ failure/sepsis, pneumonia, septic shock, candida sepsis, and sepsis/cardiogenic shock. In Study 4, there were 3 deaths unrelated to disease progression that were due to sepsis, aspartate aminotransferase elevation in the setting of Epstein Barr virus reactivation, and death of unknown cause.
Discontinuations
Discontinuation due to an adverse event occurred in 19% of patients in Study 3 and in 28% of patients in Study 4. In Study 3, thrombocytopenia and pneumonia were the only events leading to treatment discontinuation in at least 2% of patients. In Study 4, events leading to treatment discontinuation in ≥2 patients were thrombocytopenia (11%), anemia, infection, and alanine aminotransferase increased (4%).
Prolongation of PT and elevation of INR were observed in a patient receiving romidepsin concomitantly with warfarin. Monitor PT and INR more frequently in patients concurrently receiving romidepsin and warfarin [see Clinical Pharmacology (12.3)].
Strong CYP3A4 inhibitors increase concentrations of romidepsin [see Clinical Pharmacology (12.3)]. Monitor for toxicity related to increased romidepsin exposure and follow the dose modifications for toxicity [see Dosage and Administration (2.2)] when romidepsin is initially co-administered with strong CYP3A4 inhibitors.
Rifampin (a potent CYP3A4 inducer) increased the concentrations of romidepsin [see Clinical Pharmacology (12.3)]. Avoid co-administration of romidepsin with rifampin. The use of other potent CYP3A4 inducers should be avoided when possible.
Risk Summary
Based on its mechanism of action and findings from animal studies, romidepsin can cause embryo-fetal harm when administered to a pregnant woman [see Clinical Pharmacology (12.1)].
There are no available data on romidepsin use in pregnant women to inform a drug associated risk of major birth defects and miscarriage. In an animal reproductive study, romidepsin was embryocidal and caused adverse developmental outcomes including embryo-fetal toxicity and malformations at exposures below those in patients at the recommended dose (see Data). Advise pregnant women of the potential risk to a fetus and to avoid becoming pregnant while receiving romidepsin and for at least 1 month after the last dose.
The background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.
Data
Animal Data
Romidepsin was administered intravenously to pregnant rats during the period of organogenesis at doses of 0.1, 0.2, or 0.5 mg/kg/day. Substantial resorption or postimplantation loss was observed at the high-dose of 0.5 mg/kg/day, a maternally toxic dose. Adverse embryo-fetal effects were noted at romidepsin doses of ≥0.1 mg/kg/day, with systemic exposures (AUC) ≥0.2% of the human exposure at the recommended dose of 14 mg/m2/week. Drug-related fetal effects consisted of reduced fetal body weights, folded retina, rotated limbs, and incomplete sternal ossification.
Risk Summary
There are no data on the presence of romidepsin or its metabolites in human milk, the effects on the breastfed child, or the effects on milk production. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in the breastfed child, advise lactating women not to breastfeed during treatment with romidepsin and for at least 1 week after the last dose.
Romidepsin can cause fetal harm when administered to a pregnant woman [see Warnings and Precautions (5.5) and Use in Specific Populations (8.1)].
Pregnancy Testing
Perform pregnancy testing in females of reproductive potential within 7 days prior to initiating therapy with romidepsin.
Contraception
Females
Advise females of reproductive potential to use effective contraception during treatment with romidepsin and for at least 1 month after the last dose. romidepsin may reduce the effectiveness of estrogen-containing contraceptives. Therefore, alternative methods of non-estrogen containing contraception (e.g., condoms, intrauterine devices) should be used in patients receiving romidepsin.
Infertility
Based on findings in animals, romidepsin has the potential to affect male and female fertility [see Nonclinical Toxicology (13.1)].
The safety and effectiveness of romidepsin in pediatric patients has not been established.
Of the approximately 300 patients with CTCL or PTCL in trials, about 25% were >65 years old. No overall differences in safety or effectiveness were observed between these subjects and younger subjects; however, greater sensitivity of some older individuals cannot be ruled out.
In a hepatic impairment study, romidepsin was evaluated in 19 patients with advanced cancer and mild (8), moderate (5), or severe (6) hepatic impairment. There were 4 deaths during the first cycle of treatment: 1 patient with mild hepatic impairment, 1 patient with moderate hepatic impairment, and 2 patients with severe hepatic impairment. No dose adjustments are recommended for patients with mild hepatic impairment. Reduce the romidepsin starting dose for patients with moderate and severe hepatic impairment [see Dosage and Administration (2.3) and Clinical Pharmacology (12.3)]. Monitor patients with hepatic impairment more frequently for toxicity, especially during the first cycle of therapy.
No specific information is available on the treatment of overdosage of romidepsin.
Toxicities in a single-dose study i rats or dogs, at intravenous romidepsin doses up to 2.2-fold the recommended human dose based on the body surface area, included irregular respiration, irregular heartbeat, staggering gait, tremor, and tonic convulsions.
In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g., clinical monitoring and supportive therapy, if required. There is no known antidote for romidepsin and it is not known if romidepsin is dialyzable.
Romidepsin, a histone deacetylase (HDAC) inhibitor, is a bicyclic depsipeptide. At room temperature, romidepsin is a white powder and is described chemically as (1S,4S,7Z,10S,16E,21R)-7-ethylidene-4,21-bis(1-methylethyl)-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8.7.6]tricos-16-ene-3,6,9,19,22-pentone. The empirical formula is C24H36N4O6S2.
The molecular weight is 540.71 and the structural formula is:
Romidepsin for injection is intended for intravenous infusion only after reconstitution with the supplied diluent and after further dilution with 0.9% Sodium Chloride, USP.
Romidepsin is supplied as a kit containing 2 vials.
Romidepsin for injection is a sterile lyophilized white powder and is supplied in a 10 mg single-dose vial containing 11 mg romidepsin and 22 mg povidone, USP.
Diluent for romidepsin is a sterile clear solution and is supplied in a single-dose vial containing 2.4 mL (2.2 mL deliverable volume). Diluent for romidepsin contains 80% (v/v) propylene glycol, USP and 20% (v/v) dehydrated alcohol, USP.
Romidepsin is a histone deacetylase (HDAC) inhibitor. HDACs catalyze the removal of acetyl groups from acetylated lysine residues in histones, resulting in the modulation of gene expression. HDACs also deacetylate non-histone proteins, such as transcription factors. In vitro, romidepsin causes the accumulation of acetylated histones, and induces cell cycle arrest and apoptosis of some cancer cell lines with IC50 values in the nanomolar range. The mechanism of the antineoplastic effect of romidepsin observed in nonclinical and clinical studies has not been fully characterized.
Cardiac Electrophysiology
At doses of 14 mg/m2 as a 4-hour intravenous infusion, and at doses of 8 (0.57 times the recommended dose), 10 (0.71 times the recommended dose) or 12 (0.86 times the recommended dose) mg/m2 as a 1-hour infusion, no large changes in the mean QTc interval (>20 milliseconds) from baseline based on Fridericia correction method were detected. Small increase in mean QT interval (< 10 milliseconds) and mean QT interval increase between 10 to 20 milliseconds cannot be excluded.
Romidepsin was associated with a delayed concentration-dependent increase in heart rate in patients with advanced cancer with a maximum mean increase in heart rate of 20 beats per minute occurring at the 6-hour time point after start of romidepsin infusion for patients receiving 14 mg/m2 as a 4-hour infusion.
In patients with T-cell lymphomas who received 14 mg/m2 of romidepsin intravenously over a 4-hour period on days 1, 8, and 15 of a 28-day cycle, geometric mean values of the maximum plasma concentration (Cmax) and the area under the plasma concentration versus time curve (AUC0-∞) were 377 ng/mL and 1549 ng*hr/mL, respectively. Romidepsin exhibited linear pharmacokinetics across doses ranging from 1.0 (0.07 times the recommended dose) to 24.9 (1.76 times the recommended dose) mg/m2 when administered intravenously over 4 hours in patients with advanced cancers.
Distribution
Romidepsin is highly protein bound in plasma (92% to 94%) over the concentration range of 50 ng/mL to 1000 ng/mL with α1-acid-glycoprotein (AAG) being the principal binding protein. Romidepsin is a substrate of the efflux transporter P-glycoprotein (P-gp, ABCB1).
In vitro, romidepsin accumulates into human hepatocytes via an unknown active uptake process. Romidepsin is not a substrate of the following uptake transporters: BCRP, BSEP, MRP2, OAT1, OAT3, OATP1B1, OATP1B3, or OCT2. In addition, romidepsin is not an inhibitor of BCRP, MRP2, MDR1 or OAT3. Although romidepsin did not inhibit OAT1, OCT2, and OATP1B3 at concentrations seen clinically (1 μmol/L), modest inhibition was observed at 10 μmol/L. Romidepsin was found to be an inhibitor of BSEP and OATP1B1.
Metabolism
Romidepsin undergoes extensive metabolism in vitro primarily by CYP3A4 with minor contribution from CYP3A5, CYP1A1, CYP2B6, and CYP2C19. At therapeutic concentrations, romidepsin did not competitively inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A4 in vitro.
At therapeutic concentrations, romidepsin did not cause notable induction of CYP1A2, CYP2B6 and CYP3A4 in vitro. Therefore, pharmacokinetic drug-drug interactions are unlikely to occur due to CYP450 induction or inhibition by romidepsin when co-administered with CYP450 substrates.
Excretion
Following 4-hour intravenous administration of romidepsin at 14 mg/m2 on days 1, 8, and 15 of a 28-day cycle in patients with T-cell lymphomas, the terminal half-life (t1/2) was approximately 3 hours. No accumulation of plasma concentration of romidepsin was observed after repeated dosing.
Drug Interactions
Ketoconazole: Following co-administration of 8 mg/m2 romidepsin (4-hour infusion) with ketoconazole, the overall romidepsin exposure was increased by approximately 25% and 10% for AUC0-∞ and Cmax, respectively, compared to romidepsin alone, and the difference in AUC0-∞ between the 2 treatments was statistically significant.
Rifampin: Following co-administration of 14 mg/m2 romidepsin (4-hour infusion) with rifampin, the overall romidepsin exposure was increased by approximately 80% and 60% for AUC0-∞ and Cmax, respectively, compared to romidepsin alone, and the difference between the 2 treatments was statistically significant. Co-administration of rifampin decreased the romidepsin clearance and volume of distribution by 44% and 52%, respectively. The increase in exposure seen after co-administration with rifampin is likely due to rifampin's inhibition of an undetermined hepatic uptake process that is predominant for the disposition of romidepsin.
Specific Populations
Effect of Age, Gender, Race or Renal Impairment
The pharmacokinetics of romidepsin was not influenced by age (27 to 83 yrs), gender, race (white vs. black) or mild (estimated creatinine clearance 50 - 80 mL/min), moderate (estimated creatinine clearance 30-50 mL/min), or severe (estimated creatinine clearance <30 mL/min) renal impairment. The effect of end-stage renal disease (estimated creatine clearance less than 15 mL/min) on romidepsin pharmacokinetics has not been studied.
Hepatic Impairment
Romidepsin clearance decreased with increased severity of hepatic impairment. In patients with cancer, the geometric mean Cmax values after administration of 14, 7, and 5 mg/m2 romidepsin in patients with mild (B1: bilirubin ≤ULN and AST >ULN; B2: bilirubin >ULN but ≤1.5 × ULN and any AST), moderate (bilirubin >1.5 × ULN to ≤3 × ULN and any AST), and severe (bilirubin >3 × ULN and any AST) hepatic impairment were approximately 111%, 96%, and 86% of the corresponding value after administration of 14 mg/m2 romidepsin in patients with normal (bilirubin ≤upper limit of normal (ULN) and aspartate aminotransferase (AST) ≤ULN) hepatic function, respectively. The geometric mean AUCinf values in patients with mild, moderate, and severe hepatic impairment were approximately 144%, 114%, and 116% of the corresponding value in patients with normal hepatic function, respectively. Among these 4 cohorts, moderate interpatient variability was noted for the exposure parameters Cmax and AUCinf, as the coefficient of variation (CV) ranged from 30% to 54%.
Carcinogenicity studies have not been performed with romidepsin. Romidepsin was not mutagenic in vitro in the bacterial reverse mutation assay (Ames test) or the mouse lymphoma assay. Romidepsin was not clastogenic in an in vivo rat bone marrow micronucleus assay when tested to the maximum tolerated dose (MTD) of 1 mg/kg in males and 3 mg/kg in females (6 and 18 mg/m2 in males and females, respectively). These doses were up to 1.3-fold the recommended human dose, based on body surface area.
Based on nonclinical findings, male and female fertility may be compromised by treatment with romidepsin. In a 26-week toxicology study, romidepsin administration resulted in testicular degeneration in rats at 0.33 mg/kg/dose (2 mg/m2/dose) following the clinical dosing schedule. This dose resulted in AUC0-∞ values that were approximately 2% the exposure level in patients receiving the recommended dose of 14 mg/m2/dose. A similar effect was seen in mice after 4 weeks of drug administration at higher doses. Seminal vesicle and prostate organ weights were decreased in a separate study in rats after 4 weeks of daily drug administration at 0.1 mg/kg/day (0.6 mg/m2/day), approximately 30% the estimated human daily dose based on body surface area. Romidepsin showed high affinity for binding to estrogen receptors in pharmacology studies. In a 26-week toxicology study in rats, atrophy was seen in the ovary, uterus, vagina and mammary gland of females administered doses as low as 0.1 mg/kg/dose (0.6 mg/m2/dose) following the clinical dosing schedule. This dose resulted in AUC0-∞ values that were 0.3% of those in patients receiving the recommended dose of 14 mg/m2/dose. Maturation arrest of ovarian follicles and decreased weight of ovaries were observed in a separate study in rats after 4 weeks of daily drug administration at 0.1 mg/kg/day (0.6 mg/m2/day). This dose is approximately 30% the estimated human daily dose based on body surface area.
Romidepsin was evaluated in 2 multicenter, single-arm clinical studies in patients with CTCL. Overall, 167 patients with CTCL were treated in the US, Europe, and Australia. Study 1 included 96 patients with confirmed CTCL after failure of at least 1 prior systemic therapy. Study 2 included 71 patients with a primary diagnosis of CTCL who received at least 2 prior skin directed therapies or one or more systemic therapies. Patients were treated with romidepsin at a starting dose of 14 mg/m2 infused over 4 hours on days 1, 8, and 15 every 28 days.
In both studies, patients could be treated until disease progression at the discretion of the investigator and local regulators. Objective disease response was evaluated according to a composite endpoint that included assessments of skin involvement, lymph node and visceral involvement, and abnormal circulating T-cells ("Sézary cells").
The primary efficacy endpoint for both studies was overall objective disease response rate (ORR) based on the investigator assessments, and defined as the proportion of patients with confirmed complete response (CR) or partial response (PR). CR was defined as no evidence of disease and PR as ≥ 50% improvement in disease. Secondary endpoints in both studies included duration of response and time to response.
Baseline Patient Characteristics
Demographic and disease characteristics of the patients in Study 1 and Study 2 are provided in Table 4.
Characteristic | Study 1 (N=96) | Study 2 (N=71) |
---|---|---|
Age | ||
N | 96 | 71 |
Mean (SD) | 57 (12) | 56 (13) |
Median (Range) | 57 (21, 89) | 57 (28, 84) |
Sex, n (%) | ||
Men | 59 (61) | 48 (68) |
Women | 37 (39) | 23 (32) |
Race, n (%) | ||
White | 90 (94) | 55 (77) |
Black | 5 (5) | 15 (21) |
Other/Not Reported | 1 (1) | 1 (1) |
Stage of Disease at Study Entry, n (%) | ||
IA | 0 (0) | 1 (1) |
IB | 15 (16) | 6 (9) |
IIA | 13 (14) | 2 (3) |
IIB | 21 (22) | 14 (20) |
III | 23 (24) | 9 (13) |
IVA | 24 (25) | 27 (38) |
IVB | 0 (0) | 12 (17) |
Number of Prior Skin-Directed Therapies | ||
Median (Range) | 2 (0, 6) | 1 (0, 3) |
Number of Prior Systemic Therapies | ||
Median (Range) | 2 (1, 8) | 2 (0, 7) |
Clinical Results
Efficacy outcomes for CTCL patients are provided in Table 5. Median time to first response was 2 months (range 1 to 6) in both studies. Median time to CR was 4 months in Study 1 and 6 months in Study 2 (range 2 to 9).
Response Rate | Study 1 (N=96) | Study 2 (N=71) |
---|---|---|
|
||
ORR (CR + PR), n (%) [95% Confidence Interval] | 33 (34) [25, 45] | 25 (35) [25, 49] |
CR, n (%) | 6 (6) | 4 (6) |
[95% Confidence Interval] | [2, 13] | [2, 14] |
PR, n (%) | 27 (28) | 21 (30) |
[95% Confidence Interval] | [19, 38] | [20, 43] |
Duration of Response (months) | ||
N | 33 | 25 |
Median (range) | 15 (1, 20*) | 11 (1, 66*) |
Romidepsin was evaluated in a multicenter, single-arm, international clinical study in patients with PTCL who had failed at least 1 prior systemic therapy (Study 3). Patients in US, Europe, and Australia were treated with romidepsin at a dose of 14 mg/m2 infused over 4 hours on days 1, 8, and 15 every 28 days. Of the 131 patients treated, 130 patients had histological confirmation by independent central review and were evaluable for efficacy (HC Population). Six cycles of treatment were planned; patients who developed progressive disease (PD), significant toxicity, or who met another criterion for study termination were to discontinue treatment. Responding patients had the option of continuing treatment beyond 6 cycles at the discretion of the patient and Investigator until study withdrawal criteria were met.
Primary assessment of efficacy was based on rate of complete response (CR + CRu) as determined by an Independent Review Committee (IRC) using the International Workshop Response Criteria (IWC). Secondary measures of efficacy included IRC assessment of duration of response and objective disease response (ORR, CR + CRu + PR).
Baseline Patient Characteristics
Demographic and disease characteristics of the PTCL patients are provided in Table 6.
Characteristic | Study 3 (N=130) | Study 4 (N=47) |
---|---|---|
|
||
Age (years), n | 130 | 47 |
Mean (SD) | 59 (13) | 59 (13) |
Median | 61 | 59 |
Sex, n (%) | ||
Male | 88 (68) | 25 (53) |
Female | 42 (32) | 22 (47) |
Race, n (%) | ||
White | 116 (89) | 40 (85) |
Black | 7 (5) | 4 (9) |
Asian | 3 (2) | 3 (6) |
Other | 4 (3) | 0 |
PTCL Subtype Based on Central Diagnosis, n (%) | ||
PTCL Unspecified (NOS) | 69 (53) | 28 (60) |
Angioimmunoblastic T-cell lymphoma (AITL) | 27 (21) | 7 (15) |
ALK-1 negative anaplastic large cell lymphoma (ALCL) | 21 (16) | 5 (11) |
Other | 13 (10) | 7 (16) |
Stage of Disease, n (%)* | ||
I/II | 39 (30) | 2 (4) |
III/IV | 91 (70) | 45 (96) |
ECOG Performance Status, n (%) | ||
0 | 46 (35) | 20 (43) |
1 | 67 (51) | 22 (47) |
2 | 17 (13) | 4 (9) |
Number of Prior Systemic Therapies | ||
Median (Range) | 2 (1, 8) | 3 (1, 6) |
All patients in both studies had received prior systemic therapy for PTCL. In Study 4, a greater percentage of patients had extensive prior radiation and chemotherapy. Twenty-one patients (16%) in Study 3 and 18 patients (38%) in Study 4 had received prior autologous stem cell transplant and 31 (24%) and 19 (40%) patients, respectively, had received prior radiation therapy.
Clinical Results
Efficacy outcomes for PTCL patients as determined by the IRC are provided in Table 7 for Study 3. The complete response rate was 15% and overall response rate was 26%. Similar complete response rates were observed by the IRC across the 3 major PTCL subtypes (NOS, AITL, and ALK-1 negative ALCL). Median time to objective response was 1.8 months (~2 cycles) for the 34 patients who achieved CR, CRu, or PR and median time to CR was 3.5 months (~4 cycles) for the 20 patients with complete response. The responses in 12 of the 20 patients achieving CR and CRu were known to exceed 11.6 months; the follow-up on the remaining 8 patients was discontinued prior to 8.5 months.
Response Rate | Study 3 (N=130) |
---|---|
|
|
CR+CRu, n (%)* | 20 (15.4) [9.7, 22.8]† |
PR, n (%)‡ | 14 (10.8) [6.0, 17.4]† |
ORR (CR+CRu+PR), n (%)‡ | 34 (26.2) [18.8, 34.6]† |
In a second single-arm clinical study in patients with PTCL who had failed prior therapy (Study 4), patients were treated with romidepsin at a starting dose of 14 mg/m2 infused over 4 hours on days 1, 8, and 15 every 28 days. Patients could be treated until disease progression at the discretion of the patient and the Investigator. The percentage of patients achieving CR + CRu in Study 4 was similar to that in Study 3.
Romidepsin is supplied as a kit including a sterile, lyophilized powder in a 10 mg single-dose vial containing 11 mg of romidepsin and 22 mg of the bulking agent, povidone, USP. In addition, each kit includes a single-dose sterile diluent vial containing 2.4 mL (2.2 mL deliverable volume) of 80% propylene glycol, USP, and 20% dehydrated alcohol, USP.
NDC: 0069-0983-01: Romidepsin KIT containing 1 vial of romidepsin and 1 vial of diluent for romidepsin per carton.
Romidepsin for injection is supplied as a kit containing 2 vials in a single carton. The carton must be stored at 20° to 25°C, excursions permitted between 15° to 30°C. (See USP Controlled Room Temperature.)
Romidepsin is a cytotoxic drug. Follow applicable special handling and disposal procedures. [see References (15)].
Advise the patient to read the FDA-approved patient labeling (Patient Information).
This Patient Information has been approved by the U.S. Food and Drug Administration. | Revised: 11/2018 | ||
PATIENT INFORMATION Romidepsin for Injection (roe" mi dep' sin) |
|||
What is romidepsin?
Romidepsin is a prescription medicine used to treat people with a type of cancer called cutaneous T-cell lymphoma (CTCL) or peripheral T-cell lymphoma (PTCL) after at least one other type of medicine by mouth or injection has been tried. It is not known if romidepsin is safe and effective in children under 18 years of age. |
|||
Before receiving romidepsin, tell your healthcare provider about all of your medical conditions, including if you:
Some medicines may affect how romidepsin works, or romidepsin may affect how other medicines work. Especially tell your healthcare provider if you take or use:
|
|||
How will I receive romidepsin?
|
|||
What are the possible side effects of romidepsin? Romidepsin may cause serious side effects, including:
|
|||
|
|
||
|
|||
General information about the safe and effective use of romidepsin
Medicines are sometimes prescribed for purposes other than those listed in a Patient Information leaflet. This Patient Information leaflet summarizes the most important information about romidepsin. If you would like more information, talk with your healthcare provider. You can ask your pharmacist or healthcare provider for information about romidepsin that is written for health professionals. |
|||
What are the ingredients in romidepsin? Active ingredient: romidepsin Inactive ingredients: povidone. The diluent contains 80% propylene glycol and 20% dehydrated alcohol. Distributed by: Pfizer Labs Division of Pfizer Inc New York, NY 10017 Manufactured by: Baxter Oncology GmbH Halle/Westfalen, Germany ROMPFEPPI.008 11/18 For more information, call 1-800-438-1985. |
ROMIDEPSIN
romidepsin kit |
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
Labeler - PFIZER LABORATORIES DIV PFIZER INC (134489525) |
Registrant - Celgene Corporation (174201137) |