SODIUM PHENYLACETATE AND SODIUM BENZOATE injection, solution, concentrate

Sodium Phenylacetate and Sodium Benzoate by

Drug Labeling and Warnings

Sodium Phenylacetate and Sodium Benzoate by is a Prescription medication manufactured, distributed, or labeled by FOSUN PHARMA USA INC. Drug facts, warnings, and ingredients follow.

Drug Details [pdf]

  • 1 INDICATIONS AND USAGE

    Sodium phenylacetate and sodium benzoate injection is indicated as adjunctive therapy in pediatric and adult patients for the treatment of acute hyperammonemia and associated encephalopathy in patients with deficiencies in enzymes of the urea cycle. During acute hyperammonemic episodes, arginine supplementation, caloric supplementation, dietary protein restriction, hemodialysis, and other ammonia lowering therapies should be considered [ see Warnings and Precautions (5)].

  • 2 DOSAGE AND ADMINISTRATION

    2.1 Recommended Dose

    Sodium phenylacetate and sodium benzoate injection must be diluted with sterile 10% Dextrose Injection (D10W) before administration. The dilution and dosage of sodium phenylacetate and sodium benzoate injection are determined by weight for neonates, infants and young children, and by body surface area for larger patients, including older children, adolescents, and adults (Table 1). Discard unused portion.

    Table 1: Dosage and Administration
    Abbreviations: CPS - carbamyl phosphate synthetase; OTC - ornithine transcarbamylase; ASS - argininosuccinate synthetase; ASL - argininosuccinate lyase

    Patient Population

    Components of Infusion Solution

    Sodium Phenylacetate and Sodium Benzoate Injection must be diluted with sterile 10% Dextrose Injection at ≥ 25 mL/kg before administration.

    Dosage Provided

    Sodium Phenylacetate and Sodium Benzoate Injection

    Arginine HCl Injection, 10%

    Sodium Phenylacetate

    Sodium Benzoate

    Arginine HCl

    CPS and OTC Deficiency

    Patients 0 to 20 kg:

    Dose

    Loading: over 90 to 120 minutes Maintenance: over 24 hours

    2.5 mL/kg

    2 mL/kg

    250 mg/kg

    250 mg/kg

    200 mg/kg

    ASS and ASL Deficiency

    Dose

    Loading: over 90 to 120 minutes Maintenance: over 24 hours

    2.5 mL/kg

    6 mL/kg

    250 mg/kg

    250 mg/kg

    600 mg/kg

    CPS and OTC Deficiency

    Patients > 20 kg:

    Dose

    Loading: over 90 to 120 minutes Maintenance: over 24 hours

    55 mL/m 2

    2 mL/kg

    5.5 g/m 2

    5.5 g/m 2

    200 mg/kg

    ASS and ASL Deficiency

    Dose

    Loading: over 90 to 120 minutes Maintenance: over 24 hours

    55 mL/m 2

    6 mL/kg

    5.5 g/m 2

    5.5 g/m 2

    600 mg/kg

     

    2.2 Administration

    Sodium phenylacetate and sodium benzoate injection is a concentrated solution and must be diluted before intravenous administration via a central venous catheter. Administration through a peripheral intravenous catheter may cause burns. Sodium phenylacetate and sodium benzoate injection may not be administered by any other route.

    Sodium phenylacetate and sodium benzoate injection should be administered as a loading dose infusion over 90 to 120 minutes, followed by the same dose repeated as a maintenance infusion administered over 24 hours. Because of prolonged plasma levels achieved by phenylacetate in pharmacokinetic studies, repeat loading doses of sodium phenylacetate and sodium benzoate injection should not be administered. Maintenance infusions may be continued until elevated plasma ammonia levels have been normalized or the patient can tolerate oral nutrition and medications. An antiemetic may be administered during sodium phenylacetate and sodium benzoate injection infusion to aid control of infusion-associated nausea and vomiting. Administration of analogous oral drugs, such as sodium phenylbutyrate, should be terminated prior to sodium phenylacetate and sodium benzoate injection infusion.

    Sodium phenylacetate and sodium benzoate injection infusion should be started as soon as the diagnosis of hyperammonemia is made. Treatment of hyperammonemia also requires caloric supplementation and restriction of dietary protein. Non-protein calories should be supplied principally as glucose (8–10 mg/kg/min) with an intravenous fat emulsion added. Attempts should be made to maintain a caloric intake of greater than 80 kcal/kg/day. During and after infusion of sodium phenylacetate and sodium benzoate injection, ongoing monitoring of the following clinical laboratory values is crucial: plasma ammonia, glutamine, quantitative plasma amino acids, blood glucose, electrolytes, venous or arterial blood gases, AST and ALT. On-going monitoring of the following clinical responses is also crucial to assess patient response to treatment: neurological status, Glasgow Coma Scale, tachypnea, CT or MRI scan or fundoscopic evidence of cerebral edema, and/or of gray matter and white matter damage. Hemodialysis should be considered in patients with severe hyperammonemia or who are not responsive to sodium phenylacetate and sodium benzoate injection administration [ see Warnings and Precautions (5)]. In the non-neonatal study patient population treated with sodium phenylacetate and sodium benzoate injection, dialysis was required in 13% of hyperammonemic episodes. Standard hemodialysis was the most frequently used dialysis method. High levels of ammonia can be reduced quickly when sodium phenylacetate and sodium benzoate injection is used with hemodialysis, as the ammonia-scavenging of sodium phenylacetate and sodium benzoate injection suppresses the production of ammonia from catabolism of endogenous protein and hemodialysis eliminates the ammonia and ammonia conjugates.

    Sodium phenylacetate and sodium benzoate injection solutions are physically and chemically stable for up to 24 hours at room temperature and room lighting conditions. No compatibility information is presently available for sodium phenylacetate and sodium benzoate injection infusion solutions except for Arginine HCl Injection, 10%, which may be mixed in the same container as sodium phenylacetate and sodium benzoate injection. Other infusion solutions and drug products should not be administered together with sodium phenylacetate and sodium benzoate injection infusion solution. Sodium phenylacetate and sodium benzoate injection solutions may be prepared in glass and PVC containers.

    Arginine Administration

    Intravenous arginine is an essential component of therapy for patients with carbamyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS), or argininosuccinate lyase (ASL) deficiency. Because hyperchloremic acidosis may develop after high-dose arginine hydrochloride administration, chloride and bicarbonate levels should be monitored and appropriate amounts of bicarbonate administered.

    In hyperammonemic infants with suspected, but unconfirmed urea cycle disorders, intravenous arginine should be given (6 mL/kg of Arginine HCl Injection 10%, over 90 minutes followed by the same dose given as a maintenance infusion over 24 hours). If deficiencies of ASS or ASL are excluded as diagnostic possibilities, the intravenous dose of Arginine HCl should be reduced to 2 mL/kg/day Arginine HCl Injection 10%.

    Converting to Oral Treatment

    Once elevated ammonia levels have been reduced to the normal range, oral therapy, such as sodium phenylbutyrate, dietary management and maintenance protein restrictions should be started or reinitiated.

  • 3 DOSAGE FORMS AND STRENGTHS

    Sodium Phenylacetate and Sodium Benzoate Injection, 10% per 10%, for intravenous use, is a sterile, concentrated, aqueous solution of sodium phenylacetate and sodium benzoate.

  • 4 CONTRAINDICATIONS

    None.

  • 5 WARNINGS AND PRECAUTIONS

    5.1 Decreased Potassium Levels

    Because urine potassium loss is enhanced by the excretion of the non‑reabsorbable anions, phenylacetylglutamine and hippurate, plasma potassium levels should be carefully monitored and appropriate treatment given when necessary.

    5.2 Conditions Associated with Fluid Overload

    Sodium phenylacetate and sodium benzoate injection contains 30.5 mg of sodium per mL of undiluted product. Thus, sodium phenylacetate and sodium benzoate injection should be used with great care, if at all, in patients with congestive heart failure or severe renal insufficiency, and in clinical states in which there is sodium retention with edema. Discontinue administration of sodium phenylacetate and sodium benzoate injection, evaluate the patient, and institute appropriate therapeutic countermeasures if an adverse event occurs.

    5.3 Extravasation

    Administration must be through a central venous catheter. Administration through a peripheral line may cause burns. Bolus infusion flow rates are relatively high, especially for infants [ see Dosage and Administration (2)]. Extravasation of sodium phenylacetate and sodium benzoate injection into the perivenous tissues may lead to skin necrosis. If extravasation is suspected, discontinue the infusion and resume at a different infusion site, if necessary. The infusion site must be monitored closely for possible infiltration during drug administration. Do not administer undiluted product.

    5.4 Neurotoxicity of Phenylacetate

    Because of prolonged plasma levels achieved by phenylacetate in pharmacokinetic studies, repeat loading doses of sodium phenylacetate and sodium benzoate injection should not be administered. Additionally, neurotoxicity was reported in cancer patients receiving intravenous phenylacetate, 250–300 mg/kg/day for 14 days, repeated at 4-week intervals. Manifestations were predominantly somnolence, fatigue, and lightheadedness, with less frequent headaches, dysgeusia, hypoacusis, disorientation, impaired memory, and exacerbation of a pre‑existing neuropathy. The acute onset of symptoms upon initiation of treatment and reversibility of symptoms when the phenylacetate was discontinued suggest a drug effect [s ee Animal Toxicology and/or Pharmacology (13.2)].

    5.5 Hyperventilation and Metabolic Acidosis

    Due to structural similarities between phenylacetate and benzoate to salicylate, sodium phenylacetate and sodium benzoate injection may cause side effects typically associated with salicylate overdose, such as hyperventilation and metabolic acidosis. Monitoring of blood chemistry profiles, blood pH and pCO 2 should be performed.

  • 6 ADVERSE REACTIONS

    6.1 Clinical Trials Experience

    Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

    The safety data were obtained from 316 patients who received sodium phenylacetate and sodium benzoate injection as emergency (rescue) or prospective treatment for hyperammonemia as part of an uncontrolled, open-label study. The study population included patients between the ages of 0 to 53 years with a mean (SD) of 6.2 (8.54) years; 51% were male and 49% were female who had the following diagnoses: OTC (46%), ASS (22%), CPS (12%), ASL (2%), ARG (< 1%), THN (< 1%), and other (18%).

    Adverse reactions were reported with similar frequency in patients with OTC, ASS, CPS, and diagnoses categorized as “other.” Nervous system disorders were more frequent in patients with OTC and CPS, compared with patients with ASS and patients with “other” diagnoses. Convulsions and mental impairment were reported in patients with OTC and CPS. These observations are consistent with literature reports that patients with enzyme deficiencies occurring earlier in the urea cycle (i.e., OTC and CPS) tend to be more severely affected.

    Adverse reactions profiles differed by age group. Patients ≤ 30 days of age had more blood and lymphatic system disorders and vascular disorders (specifically hypotension), while patients > 30 days of age had more gastrointestinal disorders (specifically nausea, vomiting and diarrhea).

    Less common adverse reactions (< 3% of patients) that are characterized as severe are listed below by body system.

    BLOOD AND LYMPHATIC SYSTEM DISORDERS: coagulopathy, pancytopenia, thrombocytopenia

    CARDIAC DISORDERS: atrial rupture, bradycardia, cardiac or cardiopulmonary arrest/failure, cardiogenic shock, cardiomyopathy, pericardial effusion

    EYE DISORDERS: blindness

    GASTROINTESTINAL DISORDERS: abdominal distension, gastrointestinal hemorrhage

    GENERAL DISORDERS AND ADMINISTRATION-SITE CONDITIONS: asthenia, brain death, chest pain, multiorgan failure, edema

    HEPATOBILIARY DISORDERS: cholestasis, hepatic artery stenosis, hepatic failure/hepatotoxicity, jaundice

    INFECTIONS AND INFESTATIONS: sepsis/septic shock

    INJURY, POISONING AND PROCEDURAL COMPLICATIONS: brain herniation, subdural hematoma, overdose

    INVESTIGATIONS: blood carbon dioxide changes, blood glucose changes, blood pH increased, cardiac output decreased, pCO 2 changes, respiratory rate increased

    METABOLISM AND NUTRITION DISORDERS: alkalosis, dehydration, fluid overload/retention, hypoglycemia, hyperkalemia, hypernatremia, alkalosis, tetany

    NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED : hemangioma acquired

    NERVOUS SYSTEM DISORDERS: areflexia, ataxia, brain infarction, brain hemorrhage, cerebral atrophy, clonus, depressed level of consciousness, encephalopathy, nerve paralysis, intracranial pressure increased, subdural hematoma, tremor

    PSYCHIATRIC DISORDERS: acute psychosis, aggression, confusional state, hallucinations

    RENAL AND URINARY DISORDERS: anuria, renal failure, urinary retention

    RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS: acute respiratory distress syndrome, dyspnea, hypercapnia, hyperventilation, Kussmaul respiration, pneumonia aspiration, pneumothorax, pulmonary hemorrhage, pulmonary edema, respiratory acidosis or alkalosis, respiratory arrest/failure

    SKIN AND SUBCUTANEOUS TISSUE DISORDERS: alopecia, blister, pruritis generalized, rash, urticaria

    VASCULAR DISORDERS: flushing, hemorrhage, hypertension, phlebothrombosis/thrombosis

    Patients

    N=316

    Number of patients with any adverse event

    163 (52%)

    Blood and lymphatic system disorders

    35 (11%)

    Anemia

    12 (4%)

    Disseminated intravascular coagulation

    11 (3%)

    Cardiac disorders

    28 (9%)

    Gastrointestinal disorders

    42 (13%)

    Diarrhea

    10 (3%)

    Nausea

    9 (3%)

    Vomiting

    29 (9%)

    General disorders and administration-site conditions

    45 (14%)

    Injection-site reaction

    11 (3%)

    Pyrexia

    17 (5%)

    Infections

    39 (12%)

    Urinary tract infection

    9 (3%)

    Injury, poisoning and procedural complications

    12 (4%)

    Investigations

    32 (10%)

    Metabolism and nutrition disorders

    67 (21%)

    Acidosis

    8 (3%)

    Hyperammonemia

    17 (5%)

    Hyperglycemia

    22 (7%)

    Hypocalcemia

    8 (3%)

    Hypokalemia

    23 (7%)

    Metabolic acidosis

    13 (4%)

    Nervous system disorders

    71 (22%)

    Brain edema

    17 (5%)

    Coma

    10 (3%)

    Convulsions

    19 (6%)

    Mental impairment

    18 (6%)

    Psychiatric disorders

    16 (5%)

    Agitation

    8 (3%)

    Renal and urinary disorders

    14 (4%)

    Respiratory, thoracic and mediastinal disorders

    47 (15%)

    Respiratory distress

    9 (3%)

    Skin and subcutaneous tissue disorders

    19 (6%)

    Vascular disorders

    19 (6%)

    Hypotension14 (4%)

  • 7 DRUG INTERACTIONS

    Formal drug interaction studies have not been performed with sodium phenylacetate and sodium benzoate injection.

    Some antibiotics such as penicillin may compete with phenylacetylglutamine and hippurate for active secretion by renal tubules, which may affect the overall disposition of the infused drug.

    Probenecid is known to inhibit the renal transport of many organic compounds, including aminohippuric acid, and may affect renal excretion of phenylacetylglutamine and hippurate.

    There have been reports that valproic acid can induce hyperammonemia through inhibition of the synthesis of N-acetylglutamate, a co-factor for carbamyl phosphate synthetase. Therefore, administration of valproic acid to patients with urea cycle disorders may exacerbate their condition and antagonize the efficacy of sodium phenylacetate and sodium benzoate injection.

    Use of corticosteroids may cause a protein catabolic state and, thereby, potentially increase plasma ammonia levels in patients with impaired ability to form urea.

  • 8 USE IN SPECIFIC POPULATIONS

    8.1 Pregnancy

    Risk Summary

    Available data with sodium phenylacetate and sodium benzoate injection use in pregnant women are insufficient to identify a drug-associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. Animal reproduction studies have not been conducted with sodium phenylacetate and sodium benzoate injection.

    The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4%, and 15 to 20%, respectively.

    8.2 Lactation

    Risk Summary

    There are no data on the presence of sodium phenylacetate, sodium benzoate in either human or animal milk, the effects on the breastfed infant, or the effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for sodium phenylacetate and sodium benzoate injection and any potential adverse effects on the breastfed infant from sodium phenylacetate and sodium benzoate injection or from the underlying maternal condition.

    8.4 Pediatric Use

    Sodium phenylacetate and sodium benzoate injection has been used as a treatment for acute hyperammonemia in pediatric patients including patients in the early neonatal period [ see Dosage and Administration (2)].

    8.5 Geriatric Use

    Clinical studies of sodium phenylacetate and sodium benzoate injection did not include any patients aged 65 and over to determine whether they respond differently from younger patients. Urea cycle disorders are presently diseases of the pediatric and younger adult populations. No pharmacokinetic studies of sodium phenylacetate and sodium benzoate injection have been performed in geriatric patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and concomitant disease or other drug therapy in this patient population.

    8.6 Gender

    Pharmacokinetic parameters of sodium phenylacetate and sodium benzoate injection were compared in healthy males and females. Bioavailability of both benzoate and phenylacetate was slightly higher in females than in males. However, conclusions cannot be drawn due to the limited number of subjects in this study.

    8.7 Hepatic Insufficiency

    Limited information is available on the metabolism and excretion of sodium phenylacetate and sodium benzoate in patients with impaired hepatic function. However, metabolic conjugation of sodium phenylacetate and sodium benzoate is known to take place in the liver and kidney. Therefore, caution should be used in administering sodium phenylacetate and sodium benzoate injection to patients with hepatic insufficiency.

    8.8 Renal Impairment

    The drug metabolites of sodium phenylacetate and sodium benzoate injection (phenylacetylglutamine and hippurate) and subsequently ammonia are primarily excreted by the kidney. Therefore, use caution and closely monitor patients with impaired renal function who receive sodium phenylacetate and sodium benzoate injection.

  • 10 OVERDOSAGE

    Overdosage has been reported during sodium phenylacetate and sodium benzoate injection treatment in urea cycle-deficient patients. All patients in the uncontrolled open-label study were to be treated with the same dose of sodium phenylacetate and sodium benzoate injection. However, some patients received more than the dose level specified in the protocol. In 16 of the 64 deaths, the patient received a known overdose of sodium phenylacetate and sodium benzoate injection. Causes of death in these patients included cardiorespiratory failure/arrest (6 patients), hyperammonemia (3 patients), increased intracranial pressure (2 patients), pneumonitis with septic shock and coagulopathy (1 patient), error in dialysis procedure (1 patient), respiratory failure (1 patient), intractable hypotension and probable sepsis (1 patient), and unknown (1 patient). Additionally, other signs of intoxication may include obtundation (in the absence of hyperammonemia), hyperventilation, a severe compensated metabolic acidosis, perhaps with a respiratory component, large anion gap, hypernatremia and hyperosmolarity, progressive encephalopathy, cardiovascular collapse, and death.

    In case of overdose of sodium phenylacetate and sodium benzoate injection, discontinue the drug and institute appropriate emergency medical monitoring and procedures. In severe cases, the latter may include hemodialysis (procedure of choice) or peritoneal dialysis (when hemodialysis is unavailable).

  • 11 DESCRIPTION

    Sodium phenylacetate and sodium benzoate injection, 10% per 10% (a nitrogen binding agent) is a sterile, concentrated, aqueous solution of sodium phenylacetate and sodium benzoate. The pH of the solution is between 6 and 8. Sodium phenylacetate is a white to off-white powder. It is soluble in water. Sodium benzoate is a white to off-white powder that is readily soluble in water.

    Sodium Phenylacetate and Sodium Benzoate Structural Formula

    Sodium phenylacetate has a molecular weight of 158.14 and the molecular formula C 8H 7NaO 2. Sodium benzoate has a molecular weight of 144.10 and the molecular formula C 7H 5NaO 2.

    Each mL of sodium phenylacetate and sodium benzoate injection contains 100 mg of sodium phenylacetate and 100 mg of sodium benzoate, and Water for Injection. Sodium hydroxide and/or hydrochloric acid may have been used for pH adjustment.

    Sodium phenylacetate and sodium benzoate injection is a sterile, concentrated solution intended for intravenous administration via a central venous catheter only after dilution [ see Dosage and Administration (2)].

  • 12 CLINICAL PHARMACOLOGY

    12.1 Mechanism of Action

    Urea cycle disorders can result from decreased activity of any of the following enzymes: N-acetylglutamate synthetase (NAGS), carbamyl phosphate synthetase (CPS), argininosuccinate synthetase (ASS), ornithine transcarbamylase (OTC), argininosuccinate lyase (ASL), or arginase (ARG).

    Sodium phenylacetate and sodium benzoate are metabolically active compounds that can serve as alternatives to urea for the excretion of waste nitrogen. Figure 2 is a schematic illustrating how the components of sodium phenylacetate and sodium benzoate injection, phenylacetate and benzoate, provide an alternative pathway for nitrogen disposal in patients without a fully functioning urea cycle. Phenylacetate conjugates with glutamine in the liver and kidneys to form phenylacetylglutamine, via acetylation. Phenylacetylglutamine is excreted by the kidneys via glomerular filtration and tubular secretion. The nitrogen content of phenylacetylglutamine per mole is identical to that of urea (both contain two moles of nitrogen). Two moles of nitrogen are removed per mole of phenylacetate when it is conjugated with glutamine. Similarly, preceded by acylation, benzoate conjugates with glycine to form hippuric acid, which is rapidly excreted by the kidneys by glomerular filtration and tubular secretion. One mole of hippuric acid contains one mole of waste nitrogen. Thus, one mole of nitrogen is removed per mole of benzoate when it is conjugated with glycine.

    Figure 2.

     

    12.2 Pharmacodynamics

    In patients with hyperammonemia due to deficiencies in enzymes of the urea cycle, sodium phenylacetate and sodium benzoate injection has been shown to decrease elevated plasma ammonia levels. These effects are considered to be the result of reduction in nitrogen overload through glutamine and glycine scavenging by sodium phenylacetate and sodium benzoate injection in combination with appropriate dietary and other supportive measures.

    12.3 Pharmacokinetics

    The pharmacokinetics of intravenously administered sodium phenylacetate and sodium benzoate injection was characterized in healthy adult volunteers. Both benzoate and phenylacetate exhibited nonlinear kinetics. Following 90-minute intravenous infusion mean AUC last for benzoate was 20.3, 114.9, 564.6, 562.8, and 1599.1 mcg/mL following doses of 1, 2, 3.75, 4, and 5.5 g/m 2, respectively. The total clearance decreased from 5.19 to 3.62 L/h/m 2 at the 3.75 and 5.5 g/m 2 doses, respectively.

    Similarly, phenylacetate exhibited nonlinear kinetics following the priming dose regimens. AUC last was 175.6, 713.8, 2040.6, 2181.6, and 3829.2 mcg⋅h/mL following doses of 1, 2, 3.75, 4, and 5.5 g/m 2, respectively. The total clearance decreased from 1.82 to 0.89 mcg⋅h/mL with increasing dose (3.75 and 4 g/m 2, respectively).

    During the sequence of 90-minute priming infusion followed by a 24-hour maintenance infusion, phenylacetate was detected in the plasma at the end of infusion (T max of 2 hr at 3.75 g/m 2) whereas, benzoate concentrations declined rapidly (T max of 1.5 hr at 3.75 g/m 2) and were undetectable at 14 and 26 hours following the 3.75 and 4 g/m 2 dose, respectively.

    A difference in the metabolic rates for phenylacetate and benzoate was noted. The formation of hippurate from benzoate occurred more rapidly than that of phenylacetylglutamine from phenylacetate, and the rate of elimination for hippurate appeared to be more rapid than that for phenylacetylglutamine.

    Pharmacokinetic observations have also been reported from twelve episodes of hyperammonemic encephalopathy in seven children diagnosed (age 3 to 26 months) with urea cycle disorders who had been administered sodium phenylacetate and sodium benzoate injection intravenously. These data showed peak plasma levels of phenylacetate and benzoate at approximately the same times as were observed in healthy adults. As in healthy adults, the plasma levels of phenylacetate were higher than benzoate and were present for a longer time.

    The pharmacokinetics of intravenous phenylacetate have been reported following administration to adult patients with advanced solid tumors. The decline in serum phenylacetate concentrations following a loading infusion of 150 mg/kg was consistent with saturable enzyme kinetics. Ninety-nine percent of administered phenylacetate was excreted as phenylacetylglutamine.

  • 13 NONCLINICAL TOXICOLOGY

    13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

    Long-term studies in animals have not been performed to evaluate the carcinogenic potential of sodium phenylacetate and sodium benzoate injection. Studies to evaluate the possible impairment of fertility or mutagenic potential of sodium phenylacetate and sodium benzoate injection have not been performed. Results indicate that sodium benzoate is not mutagenic or carcinogenic, and does not impair fertility.

    13.2 Animal Toxicology and/or Pharmacology

    In animal studies, subcutaneous administration to rat pups of 190-474 mg/kg of phenylacetate caused decreased proliferation and increased loss of neurons, and reduced central nervous system (CNS) myelin. Cerebral synapse maturation was retarded, and the number of functioning nerve terminals in the cerebrum was reduced, which resulted in impaired brain growth. Pregnant rats were given phenylacetate at 3.5 μmol/g/day subcutaneously from gestation day 7 through normal delivery. Prenatal exposure of rat pups to phenylacetate produced lesions in layer 5 cortical pyramidal cells; dendritic spines were longer and thinner than normal and reduced in number.

  • 14 CLINICAL STUDIES

    The efficacy of sodium phenylacetate and sodium benzoate injection in improving patient survival of acute hyperammonemic episodes was demonstrated in an analysis of 316 patients (1,045 episodes of hospitalization) treated between 1981 and 2003.

    The demographic characteristics and diagnoses of the patient population are shown in Table 3.

    Table 3. Baseline Characteristics and Diagnoses of Study Population
    OTC = ornithine transcarbamylase deficiency
    ASS = argininosuccinate synthetase deficiency
    CPS = carbamyl phosphate synthetase deficiency
    ASL = argininosuccinate lyase deficiency
    ARG = arginase deficiency
    THN = transient hyperammonemia of the newborn
  • * For the summary at the patient level, data obtained at first episode used.
  • Diagnosis unknown or pending (33 episodes), acidemia (14 episodes), HHH syndrome (6 episodes), carnitine translocase deficiency (4 episodes), liver disease (3 episodes), HMG CoA lyase deficiency (1 episode), non-ketotic hyperglycinemia (1 episode), suspected fatty acid oxidation deficiency (1 episode), and valproic-acid-induced hyperammonemia (1 episode).
  • Patients*

    N = 316

    Gender

    Male

    158 (51%)

    Female

    150 (49%)

    Age (years)

    N

    310

    Mean (SD)

    6.2 (8.54)

    Min–Max

    0.0–53.0

    Age groups

    0–30 days

    104 (34%)

    31 days–2 years

    55 (18%)

    > 2–12 years

    90 (29%)

    > 12–16 years

    30 (10%)

    > 16 years

    31 (10%)

    Enzyme deficiency

    OTC

    146 (46%)

    ASS

    71 (22%)

    CPS

    38 (12%)

    ASL

    7 (2%)

    ARG

    2 (< 1%)

    THN

    2 (< 1%)

    Other

    56 (18%)

    On admission to the hospital, patients with hyperammonemia and a suspected or confirmed urea cycle disorder (UCD) diagnosis were treated with a bolus dose of 0.25 g/kg (or 5.5 g/m 2) sodium phenylacetate + 0.25 g/kg (or 5.5 g/m 2) sodium benzoate over a period of 90 minutes to 6 hours, depending on the specific UCD. Infusions also contained arginine; the dose of arginine depended on the specific UCD. After completion of the bolus dose, maintenance infusions of the same dose over 24 hours were continued until the patient was no longer hyperammonemic or oral therapy could be tolerated. The mean (SD) duration of treatment was 4.6 (6.45) days per episode, and ranged from 1 to 72 days.

    Survival was substantially improved after sodium phenylacetate and sodium benzoate injection treatment compared with historical values (estimated 14% 1-year survival rate with dietary therapy alone) and with dialysis (estimated 43% survival of acute hyperammonemia).

    Eighty percent of patients (252 of 316) survived their last episode. Of the 64 patients who died, 53 (83%) died during their first hyperammonemic episode. Of the 104 neonates (< 30d) treated with sodium phenylacetate and sodium benzoate injection, 34 (33%) died during the first hyperammonemic episode.

    Ammonia levels decreased from very high levels (> 4 times the upper limit of normal [ULN]) to lower levels in 91% of episodes after treatment. In patients responding to therapy, mean ammonia concentrations decreased from 200.9 μmol/L at hour zero to 101.6 μmol/L within four hours of initiation of sodium phenylacetate and sodium benzoate injection therapy and were maintained. Hemodialysis is recommended for those patients whose plasma ammonia levels fail to fall below 150 μmol/L or by more than 40% within 4 to 8 hours after receiving sodium phenylacetate and sodium benzoate injection. A shift from high (≤ 4 times ULN) to very high (> 4 times ULN) levels was observed in only 4% of the episodes.

    Overall, investigators rated neurological status as improved, much improved, or the same in 93% of episodes, and overall status in response to treatment as improved, much improved, or the same in 97% of episodes. Recovery from coma was observed in 97% of episodes where coma was present at admission (111 of 114 episodes).

  • 16 HOW SUPPLIED/STORAGE AND HANDLING

    Sodium Phenylacetate and Sodium Benzoate Injection, 10% per 10% is supplied in a sterile, non-pyrogenic, single-dose glass vial.

    NDC: 72266-247-01

    single-dose vial containing 50 mL of

    sodium phenylacetate and sodium benzoate injection, 10% per 10%

    Storage: Store at 25°C (77°F); excursions permitted to 15°C to 30°C (59°F to 86°F).

  • 17 PATIENT COUNSELING INFORMATION

    Physicians should advise patients and caregivers about the following for safe use of sodium phenylacetate and sodium benzoate injection:

    • When plasma ammonia levels have normalized, dietary protein intake can usually be increased with the goal of unrestricted protein intake.
    • The most common adverse reactions are vomiting, hyperglycemia, hypokalemia, convulsions, and mental impairment.
    • Generally BUPHENYL is stopped during the time sodium phenylacetate and sodium benzoate injection is used.



    Distributed by:

    Fosun Pharma USA Inc.
    Princeton, NJ 08540
    Made in India

    1313000894-00

  • PRINCIPAL DISPLAY PANEL – 10%/10%

    NDC: 72266-247-01 50 mL

    Sodium Phenylacetate and Sodium Benzoate Injection 10% / 10%

    For IV Use Only

    Warning: Administration must be through a central venous catheter.

    Administration through a peripheral line may cause burns.

    Must be diluted before IV administration

    Sterile, non-pyrogenic

    Carton Label:

    Carton Label

    Vial Label:

    Vial Label

    Rx only Single-Dose Vial

    Dosage: See accompanying package insert.

    Each mL contains: 100 mg of sodium phenylacetate and 100 mg of sodium benzoate, and Water for Injection. Sodium hydroxide and/or hydrochloric acid may have been used for pH adjustment. Sterile, concentrated solution must be diluted with sterile dextrose injection, 10% (D10W) before intravenous administration.

    Discard unused portion.

    Storage: Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F).

    Keep out of reach of children.

  • INGREDIENTS AND APPEARANCE
    SODIUM PHENYLACETATE AND SODIUM BENZOATE 
    sodium phenylacetate and sodium benzoate injection, solution, concentrate
    Product Information
    Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC: 72266-247
    Route of AdministrationINTRAVENOUS
    Active Ingredient/Active Moiety
    Ingredient NameBasis of StrengthStrength
    SODIUM PHENYLACETATE (UNII: 48N6U1781G) (PHENYLACETIC ACID - UNII:ER5I1W795A) SODIUM PHENYLACETATE100 mg  in 1 mL
    SODIUM BENZOATE (UNII: OJ245FE5EU) (BENZOIC ACID - UNII:8SKN0B0MIM) SODIUM BENZOATE100 mg  in 1 mL
    Inactive Ingredients
    Ingredient NameStrength
    SODIUM HYDROXIDE (UNII: 55X04QC32I)  
    HYDROCHLORIC ACID (UNII: QTT17582CB)  
    WATER (UNII: 059QF0KO0R)  
    Packaging
    #Item CodePackage DescriptionMarketing Start DateMarketing End Date
    1NDC: 72266-247-011 in 1 CARTON08/18/2022
    150 mL in 1 VIAL, SINGLE-DOSE; Type 0: Not a Combination Product
    Marketing Information
    Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
    ANDAANDA20852108/18/2022
    Labeler - FOSUN PHARMA USA INC (080920998)

  • © 2025 FDA.report
    This site is not affiliated with or endorsed by the FDA.