MIDODRINE HYDROCHLORIDE by is a Prescription medication manufactured, distributed, or labeled by AvKARE, Inc.. Drug facts, warnings, and ingredients follow.
Because midodrine hydrochloride can cause marked elevation of supine blood pressure, it should be used in patients whose lives are considerably impaired despite standard clinical care. The indication for use of midodrine hydrochloride in the treatment of symptomatic orthostatic hypotension is based primarily on a change in a surrogate marker of effectiveness, an increase in systolic blood pressure measured one minute after standing, a surrogate marker considered likely to correspond to a clinical benefit. At present, however, clinical benefits of midodrine hydrochloride, principally improved ability to carry out activities of daily living, have not been verified.
Name: Midodrine Hydrochloride Tablets
Dosage Form: 2.5 mg, 5 mg and 10 mg tablets for oral administration
Active Ingredient: Midodrine hydrochloride
Inactive Ingredients: Microcrystalline Cellulose, NF; Corn Starch, NF; Colloidal Silicon Dioxide, NF; Magnesium Stearate, NF; Talc, USP; FD&C Yellow No. 6 (5 mg tablet); Lake Blend Green (10 mg tablet).
Pharmacological Classification: Vasopressor/Antihypotensive
Chemical Names (USAN: Midodrine Hydrochloride): (1) Acetamide, 2-amino- N-[2-(2,5-dimethoxyphenyl)-2-hydroxyethyl]-monohydrochloride,(±)-; (2) (±) -2-amino- N-((beta)-hydroxy-2,5-dimethoxyphenethyl)acetamide monohydrochloride BAN, INN, JAN: Midodrine
Structural Formula:
Molecular Formula: C 12H 18N 2O 4 HCl; Molecular Weight: 290.7
Organoleptic Properties: Odorless, white, crystalline powder
Solubility: Water: SolubleMethanol: Sparingly soluble
pKa: 7.8 (0.3% aqueous solution)
pH: 3.5 to 5.5 (5% aqueous solution)
Melting Range: 200 to 203°C
Midodrine hydrochloride forms an active metabolite, desglymidodrine, that is an alpha 1-agonist, and exerts its actions via activation of the alpha-adrenergic receptors of the arteriolar and venous vasculature, producing an increase in vascular tone and elevation of blood pressure. Desglymidodrine does not stimulate cardiac beta-adrenergic receptors. Desglymidodrine diffuses poorly across the blood-brain barrier, and is therefore not associated with effects on the central nervous system. Administration of midodrine HCl results in a rise in standing, sitting, and supine systolic and diastolic blood pressure in patients with orthostatic hypotension of various etiologies. Standing systolic blood pressure is elevated by approximately 15 to 30 mmHg at 1 hour after a 10 mg dose of midodrine, with some effect persisting for 2 to 3 hours. Midodrine HCl has no clinically significant effect on standing or supine pulse rates in patients with autonomic failure.
Midodrine HCl is a prodrug, i.e., the therapeutic effect of orally administered midodrine is due to the major metabolite desglymidodrine, formed by deglycination of midodrine. After oral administration, midodrine HCl is rapidly absorbed. The plasma levels of the prodrug peak after about half an hour, and decline with a half-life of approximately 25 minutes, while the metabolite reaches peak blood concentrations about 1 to 2 hours after a dose of midodrine and has a half-life of about 3 to 4 hours. The absolute bioavailability of midodrine (measured as desglymidodrine) is 93%. The bioavailability of desglymidodrine is not affected by food. Approximately the same amount of desglymidodrine is formed after intravenous and oral administration of midodrine. Neither midodrine nor desglymidodrine is bound to plasma proteins to any significant extent.
Thorough metabolic studies have not been conducted, but it appears that deglycination of midodrine to desglymidodrine takes place in many tissues, and both compounds are metabolized in part by the liver. Neither midodrine nor desglymidodrine is a substrate for monoamine oxidase.
Renal elimination of midodrine is insignificant. The renal clearance of desglymidodrine is of the order of 385 mL/minute, most, about 80%, by active renal secretion. The actual mechanism of active secretion has not been studied, but it is possible that it occurs by the base-secreting pathway responsible for the secretion of several other drugs that are bases (see also Potential for Drug Interactions).
Midodrine has been studied in 3 principal controlled trials, one of 3 weeks duration and 2 of 1 to 2 days duration. All studies were randomized, double-blind and parallel-design trials in patients with orthostatic hypotension of any etiology and supine-to-standing fall of systolic blood pressure of at least 15 mmHg accompanied by at least moderate dizziness/lightheadedness. Patients with pre-existing sustained supine hypertension above 180/110 mmHg were routinely excluded. In a 3-week study in 170 patients, most previously untreated with midodrine, the midodrine-treated patients (10 mg tid, with the last dose not later than 6 PM) had significantly higher (by about 20 mmHg) 1-minute standing systolic pressure 1 hour after dosing (blood pressures were not measured at other times) for all 3 weeks. After week 1, midodrine-treated patients had small improvements in dizziness/lightheadedness/unsteadiness scores and global evaluations, but these effects were made difficult to interpret by a high early drop-out rate (about 25% vs 5% on placebo). Supine and sitting blood pressure rose 16/8 and 20/10 mmHg, respectively, on average.
In a 2-day study, after open-label midodrine, known midodrine responders received midodrine 10 mg or placebo at 0, 3, and 6 hours. One-minute standing systolic blood pressures were increased 1 hour after each dose by about 15 mmHg and 3 hours after each dose by about 12 mmHg; 3-minute standing pressures were increased also at 1, but not 3, hours after dosing. There were increases in standing time seen intermittently 1 hour after dosing, but not at 3 hours.
In a 1-day, dose-response trial, single doses of 0, 2.5, 10, and 20 mg of midodrine were given to 25 patients. The 10 and 20 mg doses produced increases in standing 1-minute systolic pressure of about 30 mmHg at 1 hour; the increase was sustained in part for 2 hours after 10 mg and 4 hours after 20 mg. Supine systolic pressure was ≥200 mmHg in 22% of patients on 10 mg and 45% of patients on 20 mg; elevated pressures often lasted 6 hours or more.
Midodrine hydrochloride tablets are indicated for the treatment of symptomatic orthostatic hypotension (OH). Because midodrine HCl can cause marked elevation of supine blood pressure (BP >200 mmHg systolic), it should be used in patients whose lives are considerably impaired despite standard clinical care, including non-pharmacologic treatment (such as support stockings), fluid expansion, and lifestyle alterations. The indication is based on midodrine HCl's effect on increases in 1-minute standing systolic blood pressure, a surrogate marker considered likely to correspond to a clinical benefit. At present, however, clinical benefits of midodrine HCl, principally improved ability to perform life activities, have not been established. Further clinical trials are underway to verify and describe the clinical benefits of midodrine HCl.
After initiation of treatment, midodrine HCl tablets should be continued only for patients who report significant symptomatic improvement.
Supine Hypertension: most potentially serious adverse reaction associated with midodrine hydrochloride therapy is marked elevation of supine arterial blood pressure ( supine hypertension) . Systolic pressure of about 200 mmHg were seen overall in about 13.4% of patients given 10 mg of midodrine HCl. Systolic elevations of this degree were most likely to be observed in patients with relatively elevated pretreatment systolic blood pressures ( mean 170 mmHg) . There is no experience in patients with initial supine systolic pressure above 180 mmHg, as those patients were excluded from the clinical trials. Use of midodrine HCl tablets in such patients is not recommended. Sitting blood pressures were also elevated by midodrine HCl therapy. It is essential to monitor supine and sitting blood pressures in patients maintained on midodrine HCl.
The potential for supine and sitting hypertension should be evaluated at the beginning of midodrine hydrochloride therapy. Supine hypertension can often be controlled by preventing the patient from becoming fully supine, i.e., sleeping with the head of the bed elevated. The patient should be cautioned to report symptoms of supine hypertension immediately. Symptoms may include cardiac awareness, pounding in the ears, headache, blurred vision, etc. The patient should be advised to discontinue the medication immediately if supine hypertension persists. Blood pressure should be monitored carefully when midodrine HCl is used concomitantly with other agents that cause vasoconstriction, such as phenylephrine, ephedrine, dihydroergotamine, phenylpropanolamine, or pseudoephedrine.
A slight slowing of the heart rate may occur after administration of midodrine HCl, primarily due to vagal reflex. Caution should be exercised when midodrine HCl is used concomitantly with cardiac glycosides (such as digitalis), psychopharmacologic agents, beta blockers or other agents that directly or indirectly reduce heart rate. Patients who experience any signs or symptoms suggesting bradycardia (pulse slowing, increased dizziness, syncope, cardiac awareness) should be advised to discontinue midodrine HCl and should be re-evaluated.
Midodrine HCl should be used cautiously in patients with urinary retention problems, as desglymidodrine acts on the alpha-adrenergic receptors of the bladder neck.
Midodrine HCl should be used with caution in orthostatic hypotensive patients who are also diabetic, as well as those with a history of visual problems who are also taking fludrocortisone acetate, which is known to cause an increase in intraocular pressure and glaucoma.
Midodrine HCl use has not been studied in patients with renal impairment. Because desglymidodrine is eliminated via the kidneys, and higher blood levels would be expected in such patients. Midodrine HCl should be used with caution in patients with renal impairment, with a starting dose of 2.5 mg (see DOSAGE AND ADMINISTRATION). Renal function should be assessed prior to initial use of midodrine HCl.
Midodrine HCl use has not been studied in patients with hepatic impairment. Midodrine HCl should be used with caution in patients with hepatic impairment, as the liver has a role in the metabolism of midodrine.
Patients should be told that certain agents in over-the-counter products, such as cold remedies and diet aids, can elevate blood pressure, and therefore, should be used cautiously with midodrine HCl, as they may enhance or potentiate the pressor effects of midodrine HCl (see Drug Interactions). Patients should also be made aware of the possibility of supine hypertension. They should be told to avoid taking their dose if they are to be supine for any length of time, i.e., they should take their last daily dose of midodrine HCl tablets 3 to 4 hours before bedtime to minimize nighttime supine hypertension.
Since desglymidodrine is eliminated by the kidneys and the liver has a role in its metabolism, evaluation of the patient should include assessment of renal and hepatic function prior to initiating therapy and subsequently, as appropriate.
When administered concomitantly with midodrine HCl, cardiac glycosides may enhance or precipitate bradycardia, A.V. block or arrhythmia. The use of drugs that stimulate alpha-adrenergic receptors (e.g., phenylephrine, pseudoephedrine, ephedrine, phenylpropanolamine or dihydroergotamine) may enhance or potentiate the pressor effects of midodrine HCl. Therefore, caution should be used when midodrine HCl tablets are administered concomitantly with agents that cause vasoconstriction.
Midodrine HCl has been used in patients concomitantly treated with salt-retaining steroid therapy (i.e., fludrocortisone acetate), with or without salt supplementation. The potential for supine hypertension should be carefully monitored in these patients and may be minimized by either reducing the dose of fludrocortisone acetate or decreasing the salt intake prior to initiation of treatment with midodrine HCl. Alpha-adrenergic blocking agents, such as prazosin, terazosin, and doxazosin, can antagonize the effects of midodrine HCl.
It appears possible, although there is no supporting experimental evidence, that the high renal clearance of desglymidodrine (a base) is due to active tubular secretion by the base-secreting system also responsible for the secretion of such drugs as metformin, cimetidine, ranitidine, procainamide, triamterene, flecainide, and quinidine. Thus there may be a potential for drug-drug interactions with these drugs.
Long-term studies have been conducted in rats and mice at dosages of 3 to 4 times the maximum recommended daily human dose on a mg/m 2 basis, with no indication of carcinogenic effects related to midodrine HCl. Studies investigating the mutagenic potential of midodrine HCl revealed no evidence of mutagenicity. Other than the dominant lethal assay in male mice, where no impairment of fertility was observed, there have been no studies on the effects of midodrine HCl on fertility.
Midodrine HCl increased the rate of embryo resorption, reduced fetal body weight in rats and rabbits, and decreased fetal survival in rabbits when given in doses 13 (rat) and 7 (rabbit) times the maximum human dose based on body surface area (mg/m 2). There are no adequate and well-controlled studies in pregnant women. Midodrine HCl should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. No teratogenic effects have been observed in studies in rats and rabbits.
The most frequent adverse reactions seen in controlled trials were supine and sitting hypertension; paresthesia and pruritus, mainly of the scalp; goosebumps; chills; urinary urge; urinary retention and urinary frequency.
The frequency of these events in a 3-week placebo-controlled trial is shown in the following table:
Placebo | Midodrine | |||
---|---|---|---|---|
n=88 | n=82 | |||
Event | # of reports | % of patients | # of reports | % of patients |
|
||||
Total # of reports | 22 | 77 | ||
Paresthesia * | 4 | 4.5 | 15 | 18.3 |
Piloerection | 0 | 0 | 11 | 13.4 |
Dysuria † | 0 | 0 | 11 | 13.4 |
Pruritus ‡ | 2 | 2.3 | 10 | 12.2 |
Supine hypertension § | 0 | 0 | 6 | 7.3 |
Chills | 0 | 0 | 4 | 4.9 |
Pain ¶ | 0 | 0 | 4 | 4.9 |
Rash | 1 | 1.1 | 2 | 2.4 |
Less frequent adverse reactions were headache; feeling of pressure/fullness in the head; vasodilation/flushing face; confusion/thinking abnormality; dry mouth; nervousness/anxiety and rash. Other adverse reactions that occurred rarely were visual field defect; dizziness; skin hyperesthesia; insomnia; somnolence; erythema multiforme; canker sore; dry skin; dysuria; impaired urination; asthenia; backache; pyrosis; nausea; gastrointestinal distress; flatulence and leg cramps.
The most potentially serious adverse reaction associated with midodrine hydrochloride therapy is supine hypertension. The feelings of paresthesia, pruritus, piloerection and chills are pilomotor reactions associated with the action of midodrine on the alpha-adrenergic receptors of the hair follicles. Feelings of urinary urgency, retention and frequency are associated with the action of midodrine on the alpha-receptors of the bladder neck.
To report SUSPECTED ADVERSE REACTIONS contact AvKARE, Inc. at 1-855-361-3993; email
drugsafety@avkare.com; or FDA at 1-800-FDA-1088 or
www.fda.gov/medwatch.
Symptoms of overdose could include hypertension, piloerection (goosebumps), a sensation of coldness and urinary retention. There are 2 reported cases of overdosage with midodrine hydrochloride tablets, both in young males. One patient ingested midodrine HCl drops, 250 mg, experienced systolic blood pressure of greater than 200 mmHg, was treated with an IV injection of 20 mg of phentolamine, and was discharged the same night without any complaints. The other patient ingested 205 mg of midodrine HCl (41 5-mg tablets), and was found lethargic and unable to talk, unresponsive to voice but responsive to painful stimuli, hypertensive and bradycardic. Gastric lavage was performed, and the patient recovered fully by the next day without sequelae.
The single doses that would be associated with symptoms of overdosage or would be potentially life-threatening are unknown. The oral LD50 is approximately 30 to 50 mg/kg in rats, 675 mg/kg in mice, and 125 to 160 mg/kg in dogs.
Desglymidodrine is dialyzable.
Recommended general treatment, based on the pharmacology of the drug, includes induced emesis and administration of alpha-sympatholytic drugs (e.g., phentolamine).
The recommended dose of midodrine hydrochloride tablets is 10 mg, 3 times daily. Dosing should take place during the daytime hours when the patient needs to be upright, pursuing the activities of daily living. A suggested dosing schedule of approximately 4-hour intervals is as follows: shortly before or upon arising in the morning, midday, and late afternoon (not later than 6 PM). Doses may be given in 3-hour intervals, if required, to control symptoms, but not more frequently. Single doses as high as 20 mg have been given to patients, but severe and persistent systolic supine hypertension occurs at a high rate (about 45%) at this dose. In order to reduce the potential for supine hypertension during sleep, midodrine HCl tablets should not be given after the evening meal or less than 4 hours before bedtime. Total daily doses greater than 30 mg have been tolerated by some patients, but their safety and usefulness have not been studied systematically or established. Because of the risk of supine hypertension, midodrine HCl tablets should be continued only in patients who appear to attain symptomatic improvement during initial treatment.
The supine and standing blood pressure should be monitored regularly, and the administration of midodrine HCl tablets should be stopped if supine blood pressure increases excessively.
Because desglymidodrine is excreted renally, dosing in patients with abnormal renal function should be cautious; although this has not been systematically studied, it is recommended that treatment of these patients be initiated using 2.5 mg doses.
Dosing in children has not been adequately studied.
Blood levels of midodrine and desglymidodrine were similar when comparing levels in patients 65 or older vs. younger than 65 and when comparing males vs. females, suggesting dose modifications for these groups are not necessary.
Midodrine hydrochloride is supplied as 2.5 mg, 5 mg and 10 mg tablets for oral administration.
Each 2.5 mg tablet is white, round, with "G" bisect "421" engraved on one side and plain on the other side.
Each 5 mg tablet is light orange, round, with "G" bisect "422" engraved on one side and plain on the other side: Bottle of 90 NDC: 42291-616-90
Each 10 mg tablet is light green, round, with "G" bisect "423" engraved on one side and plain on the other side.
AvKARE
NDC
42291-616-90
Midodrine HCl Tablets
5 mg*
90 Tablets Rx Only
USUAL DOSAGE: See accompanying outsert for complete prescribing information.
*Each tablet contains midodrine HCI equivalent to 5 mg of midodrine. Each tablet contains FD&C Yellow No 6.
Dispense in a tightly-closed, light-resistant container as defined in the USP, with a child-resistant closure, as required.
Store at controlled room temperature, 20°C to 25°C (68°F to 77°F) [See USP Controlled Room Temperature].
Manufactured for:
AvKARE, Inc.
Pulaski, TN 38478
Mfg. Iss. 04/13 AV Rev. 10/15 (P)
N3 42291 61690 5
MIDODRINE HYDROCHLORIDE
midodrine hydrochloride tablet |
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
MIDODRINE HYDROCHLORIDE
midodrine hydrochloride tablet |
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
MIDODRINE HYDROCHLORIDE
midodrine hydrochloride tablet |
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
Labeler - AvKARE, Inc. (796560394) |